简介概要

Numerical simulation of effect of bionic V-riblet non-smooth surface ontire anti-hydroplaning

来源期刊:中南大学学报(英文版)2015年第10期

论文作者:ZHOU Hai-chao WANG Guo-lin YANG Jian XUE Kai-xin

文章页码:3900 - 3908

Key words:tire; anti-hydroplaning; bionic non-smooth surfaces (BNSS); numerical simulation

Abstract: Inspired by the idea that bionic non-smooth surfaces (BNSS) can reduce fluid adhesion and resistance, and the effect of bionic V-riblet non-smooth structure arranged in tire tread pattern grooves surface on anti-hydroplaning performance was investigated by using computational fluid dynamics (CFD). The physical model of the object (model of V-riblet surface distribution, hydroplaning model) and SST k-ωturbulence model were established for numerical analysis of tire hydroplaning. With the help of a orthogonal table L16(45), the parameters of V-riblet structure design compared to the smooth structure were analyzed, and obtained the priority level of the experimental factors as well as the best combination within the scope of the experiment. The simulation results show that V-riblet structure can reduce water flow resistance by disturbing the eddy movement in boundary layers. Then,the preferred type of V-riblet non-smooth structure was arranged on the bottom of tire grooves for hydroplaning performance analysis. The results show that bionic V-riblet non-smooth structure can effectively increase hydroplaning velocity and improve tire anti-hydroplaning performance. Bionic design of tire tread pattern grooves is a good way to promote anti-hydroplaning performance without increasing additional groove space, so that tire grip performance and roll noise are avoided due to grooves space enlargement.

详情信息展示

Numerical simulation of effect of bionic V-riblet non-smooth surface ontire anti-hydroplaning

ZHOU Hai-chao(周海超), WANG Guo-lin(王国林), YANG Jian(杨建), XUE Kai-xin(薛开鑫)

(School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China)

Abstract:Inspired by the idea that bionic non-smooth surfaces (BNSS) can reduce fluid adhesion and resistance, and the effect of bionic V-riblet non-smooth structure arranged in tire tread pattern grooves surface on anti-hydroplaning performance was investigated by using computational fluid dynamics (CFD). The physical model of the object (model of V-riblet surface distribution, hydroplaning model) and SST k-ωturbulence model were established for numerical analysis of tire hydroplaning. With the help of a orthogonal table L16(45), the parameters of V-riblet structure design compared to the smooth structure were analyzed, and obtained the priority level of the experimental factors as well as the best combination within the scope of the experiment. The simulation results show that V-riblet structure can reduce water flow resistance by disturbing the eddy movement in boundary layers. Then,the preferred type of V-riblet non-smooth structure was arranged on the bottom of tire grooves for hydroplaning performance analysis. The results show that bionic V-riblet non-smooth structure can effectively increase hydroplaning velocity and improve tire anti-hydroplaning performance. Bionic design of tire tread pattern grooves is a good way to promote anti-hydroplaning performance without increasing additional groove space, so that tire grip performance and roll noise are avoided due to grooves space enlargement.

Key words:tire; anti-hydroplaning; bionic non-smooth surfaces (BNSS); numerical simulation

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号