简介概要

一种有效的齿轮故障识别方法

来源期刊:工矿自动化2014年第2期

论文作者:张文斌

文章页码:40 - 44

关键词:齿轮;故障识别;谐波小波包;样本熵;灰色关联度;顺序形态滤波;

摘    要:针对齿轮故障特征信息往往被信号中的噪声淹没的问题,提出了一种基于谐波小波包、样本熵和灰色关联度的齿轮故障识别方法。首先,采用顺序形态滤波器,并结合实际选用最简单的直线结构元素,对实测齿轮振动信号进行顺序形态滤波降噪预处理。然后,采用谐波小波包将不同故障的齿轮振动信号分解到3层共8个频带上,并计算各频带的样本熵。最后,以样本熵为元素构造特征向量,通过计算标准故障模式特征向量与待识别样本的灰色关联度来判断齿轮的工作状态和故障类型。试验结果表明,该方法能够有效地应用于齿轮系统的故障诊断。

详情信息展示

一种有效的齿轮故障识别方法

张文斌

红河学院工学院

摘 要:针对齿轮故障特征信息往往被信号中的噪声淹没的问题,提出了一种基于谐波小波包、样本熵和灰色关联度的齿轮故障识别方法。首先,采用顺序形态滤波器,并结合实际选用最简单的直线结构元素,对实测齿轮振动信号进行顺序形态滤波降噪预处理。然后,采用谐波小波包将不同故障的齿轮振动信号分解到3层共8个频带上,并计算各频带的样本熵。最后,以样本熵为元素构造特征向量,通过计算标准故障模式特征向量与待识别样本的灰色关联度来判断齿轮的工作状态和故障类型。试验结果表明,该方法能够有效地应用于齿轮系统的故障诊断。

关键词:齿轮;故障识别;谐波小波包;样本熵;灰色关联度;顺序形态滤波;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号