简介概要

相空间重构和极限学习机的网络流量预测模型

来源期刊:控制工程2018年第11期

论文作者:袁开银 魏彬

文章页码:2087 - 2091

关键词:流量预测;相空间重构;混沌特性;极限学习机;

摘    要:网络流量的预测可以有效降低网络拥塞频率,提高网络的服务质量,针对传统方法无法准确描述网络流量混沌特性的局限性,提出了相空间重构与极限学习机的网络流量预测模型(PHR-ELM)。首先通过相空间重构把网络流量变为有规律数据,然后采用极限学习机实现网络流量的准确预测,最后进行了网络流量预测的仿真测试,结果表明,PHR-ELM可以有效拟合网络流量的混沌变化特性,准确实现了网络流量变化趋势的预测,预测效果要优于传统模型,验证了PHR-ELM的有效性和优越性。

详情信息展示

相空间重构和极限学习机的网络流量预测模型

袁开银,魏彬

河南财经政法大学现代教育技术中心

摘 要:网络流量的预测可以有效降低网络拥塞频率,提高网络的服务质量,针对传统方法无法准确描述网络流量混沌特性的局限性,提出了相空间重构与极限学习机的网络流量预测模型(PHR-ELM)。首先通过相空间重构把网络流量变为有规律数据,然后采用极限学习机实现网络流量的准确预测,最后进行了网络流量预测的仿真测试,结果表明,PHR-ELM可以有效拟合网络流量的混沌变化特性,准确实现了网络流量变化趋势的预测,预测效果要优于传统模型,验证了PHR-ELM的有效性和优越性。

关键词:流量预测;相空间重构;混沌特性;极限学习机;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号