简介概要

Towards the diffusion source cost reduction for NdFeB grain boundary diffusion process

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2020年第1期

论文作者:H.X.Zeng Z.W.Liu J.S.Zhang X.F.Liao H.Y.Yu

文章页码:50 - 54

摘    要:Aiming at improving the performance/cost ratio in grain boundary diffusion process(GBDP),the critical RE containing Pr-Al-Cu alloy,less expensive RE containing La-Al-Cu alloy and non-RE Al-Cu alloy were employed as the diffusion sources.The preliminary results show that the coercivity was successfully enhanced from 1000 kA/m to 1695,1156 and 1125 kA/m by Pr70Al20Cu10,La70Al20Cu10 and Al75Cu25(at.%) alloys diffusion,respectively,due to the formation of(Nd,Pr)-Fe-B,La2 O3 and c-Nd2 O3 phases respectively,after diffusion.It is also found that the corrosion resistance can be improved by Al-Cu diffusion due to the positive effects of Al and Cu elements in grain boundary.The present results demonstrated the various coercivity enhancement mechanisms for the GBDP based on different diffusion sources,and provided feasible solutions for cost reduction of GBDP and NdFeB production by saving RE resource.

详情信息展示

Towards the diffusion source cost reduction for NdFeB grain boundary diffusion process

H.X.Zeng,Z.W.Liu,J.S.Zhang,X.F.Liao,H.Y.Yu

School of Materials Science and Engineering, South China University of Technology

摘 要:Aiming at improving the performance/cost ratio in grain boundary diffusion process(GBDP),the critical RE containing Pr-Al-Cu alloy,less expensive RE containing La-Al-Cu alloy and non-RE Al-Cu alloy were employed as the diffusion sources.The preliminary results show that the coercivity was successfully enhanced from 1000 kA/m to 1695,1156 and 1125 kA/m by Pr70Al20Cu10,La70Al20Cu10 and Al75Cu25(at.%) alloys diffusion,respectively,due to the formation of(Nd,Pr)-Fe-B,La2 O3 and c-Nd2 O3 phases respectively,after diffusion.It is also found that the corrosion resistance can be improved by Al-Cu diffusion due to the positive effects of Al and Cu elements in grain boundary.The present results demonstrated the various coercivity enhancement mechanisms for the GBDP based on different diffusion sources,and provided feasible solutions for cost reduction of GBDP and NdFeB production by saving RE resource.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号