简介概要

井下视频行人检测方法

来源期刊:工矿自动化2020年第2期

论文作者:李现国 李斌 刘宗鹏 冯欣欣 刘晓 宋金水 张磊

文章页码:54 - 58

关键词:井下行人检测;视频监控;深度学习;SSD网络;卷积神经网络;

摘    要:针对现有基于深度学习的行人检测方法存在计算量较大、检测效率严重依赖硬件性能等问题,对基于SSD网络的行人检测方法进行改进,设计了一种基于DenseNet网络的轻量级卷积神经网络作为SSD网络的基础网络,以满足井下视频行人实时检测需求,并设计了基于ResNet网络的辅助网络,以增强特征表征能力,提高行人检测准确性。将基于改进SSD网络的井下视频行人检测方法部署在嵌入式平台Jetson TX2上进行实验,结果表明该方法对井下视频中行人的检测准确率为87.9%,针对井下行人低密度场景的检测准确率近100%,且运算速度达48帧/s,约为基于SSD网络的行人检测方法的4.4倍,满足井下行人实时检测需求。

详情信息展示

井下视频行人检测方法

李现国1,2,李斌1,刘宗鹏1,冯欣欣1,刘晓1,宋金水1,张磊3

1. 天津工业大学电子与信息工程学院2. 天津市光电检测技术与系统重点实验室3. 山东新巨龙能源有限责任公司

摘 要:针对现有基于深度学习的行人检测方法存在计算量较大、检测效率严重依赖硬件性能等问题,对基于SSD网络的行人检测方法进行改进,设计了一种基于DenseNet网络的轻量级卷积神经网络作为SSD网络的基础网络,以满足井下视频行人实时检测需求,并设计了基于ResNet网络的辅助网络,以增强特征表征能力,提高行人检测准确性。将基于改进SSD网络的井下视频行人检测方法部署在嵌入式平台Jetson TX2上进行实验,结果表明该方法对井下视频中行人的检测准确率为87.9%,针对井下行人低密度场景的检测准确率近100%,且运算速度达48帧/s,约为基于SSD网络的行人检测方法的4.4倍,满足井下行人实时检测需求。

关键词:井下行人检测;视频监控;深度学习;SSD网络;卷积神经网络;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号