一种面向不确定数据流的聚类算法
来源期刊:东北大学学报(自然科学版)2016年第12期
论文作者:韩东红 王坤 邵崇雷 马畅
文章页码:1677 - 1682
关键词:不确定数据流;聚类;大数据;数据挖掘;最小边界矩形;
摘 要:作为大数据的重要组成,产生于传感器、移动电话设备、社交网络等的不确定流数据因其具有流速可变、规模宏大、单遍扫描及不确定性等特点,传统聚类算法不能满足用户高效实时的查询要求.首先利用MBR(minimum bounding rectangle)描述不确定元组的分布特性,并提出一种基于期望距离的不确定数据流聚类算法,计算期望距离范围的上下界剪枝距离较远的簇以减少计算量;其次针对簇内元组的分布特征提出了簇MBR的概念,提出一种基于空间位置关系的聚类算法,根据不确定元组MBR和簇MBR的空间位置关系排除距离不确定元组较远的簇,从而提高聚类算法效率;最后在合成数据集和真实数据集进行实验,结果验证了所提出算法的有效性和高效性.
韩东红1,王坤1,邵崇雷2,马畅1
1. 东北大学计算机科学与工程学院2. 沈阳理工大学机械工程学院
摘 要:作为大数据的重要组成,产生于传感器、移动电话设备、社交网络等的不确定流数据因其具有流速可变、规模宏大、单遍扫描及不确定性等特点,传统聚类算法不能满足用户高效实时的查询要求.首先利用MBR(minimum bounding rectangle)描述不确定元组的分布特性,并提出一种基于期望距离的不确定数据流聚类算法,计算期望距离范围的上下界剪枝距离较远的簇以减少计算量;其次针对簇内元组的分布特征提出了簇MBR的概念,提出一种基于空间位置关系的聚类算法,根据不确定元组MBR和簇MBR的空间位置关系排除距离不确定元组较远的簇,从而提高聚类算法效率;最后在合成数据集和真实数据集进行实验,结果验证了所提出算法的有效性和高效性.
关键词:不确定数据流;聚类;大数据;数据挖掘;最小边界矩形;