Microstructure and Properties of a Low Carbon Ti-V Microalloyed Steel
来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2018年第6期
论文作者:裴新华 LIU Zhenyu WEI Jiao LIU Xuefeng 贾涛 HU Hengfa
文章页码:1491 - 1495
摘 要:Due to the largely inhomogeneous deformation among constituent phases, the advanced high-strength multi-phase steels are always facing challenges when applied to automotive parts where local formability is critically required. In this work, two characteristic microstructures were produced from a low carbon Ti-V microalloyed steel by varying the cooling path. In the ferrite single-phase microstructure resulted from "ultra-fast cooling(UFC) + furnace-cooling(FC)", the hole-expanding ratio of 200% and tensile strength of 647 MPa were achieved. In the ferrite-bainite-martensite(F+B+M) multi-phase microstructure produced by "UFC + air-cooling(AC) + UFC", the ferrite has been strengthened by Ti-V carbides to promote the strain partitioning, which resulted in the tensile strength of ≥780 MPa, a moderate elongation and hole-expanding ratio of 93%. The strengthening contributions of Ti-V carbides were calculated to be 126 MPa and 149 MPa in the ferrite single-phase and F+B+M multi-phase microstructure, respectively.
裴新华1,2,LIU Zhenyu1,WEI Jiao3,LIU Xuefeng1,贾涛1,HU Hengfa2
1. The State Key Lab of Rolling & Automation, Northeastern University2. Meishan Iron & Steel Co., Ltd3. BaoSteel Co., Ltd
摘 要:Due to the largely inhomogeneous deformation among constituent phases, the advanced high-strength multi-phase steels are always facing challenges when applied to automotive parts where local formability is critically required. In this work, two characteristic microstructures were produced from a low carbon Ti-V microalloyed steel by varying the cooling path. In the ferrite single-phase microstructure resulted from "ultra-fast cooling(UFC) + furnace-cooling(FC)", the hole-expanding ratio of 200% and tensile strength of 647 MPa were achieved. In the ferrite-bainite-martensite(F+B+M) multi-phase microstructure produced by "UFC + air-cooling(AC) + UFC", the ferrite has been strengthened by Ti-V carbides to promote the strain partitioning, which resulted in the tensile strength of ≥780 MPa, a moderate elongation and hole-expanding ratio of 93%. The strengthening contributions of Ti-V carbides were calculated to be 126 MPa and 149 MPa in the ferrite single-phase and F+B+M multi-phase microstructure, respectively.
关键词: