简介概要

基于数据挖掘技术的建筑企业信用评价

来源期刊:中国矿业大学学报2005年第4期

论文作者:朱嬿 刘高军

关键词:数据挖掘; 建筑企业; 信用评价; 模型;

摘    要:针对传统方法的不足,分析了应用数据挖掘技术的建筑企业信用评价方法.采用Logistic,决策树和神经网络算法,从250个建筑企业组成的学习样本中挖掘信用好或差的分类规则,从而建立了3个相应的信用评价模型.将所建立的模型用于评价检验样本中的46个建筑企业,采用混淆矩阵比较了各模型的评价表现.结果显示,Logistic,决策树和神经网络模型的评价准确率分别为87.0%,82.6%和82.6%,一致性结果的准确率达到91.7%,并且各模型在稳定性、敏感度等方面具有不同特点.研究表明,数据挖掘技术是一种有效而准确的建筑企业信用评价方法,此外,不同特点的数据挖掘模型为建筑业的信用评价提供了多种选择.

详情信息展示

基于数据挖掘技术的建筑企业信用评价

朱嬿1,刘高军1

(1.清华大学,土木水利学院,北京,100084)

摘要:针对传统方法的不足,分析了应用数据挖掘技术的建筑企业信用评价方法.采用Logistic,决策树和神经网络算法,从250个建筑企业组成的学习样本中挖掘信用好或差的分类规则,从而建立了3个相应的信用评价模型.将所建立的模型用于评价检验样本中的46个建筑企业,采用混淆矩阵比较了各模型的评价表现.结果显示,Logistic,决策树和神经网络模型的评价准确率分别为87.0%,82.6%和82.6%,一致性结果的准确率达到91.7%,并且各模型在稳定性、敏感度等方面具有不同特点.研究表明,数据挖掘技术是一种有效而准确的建筑企业信用评价方法,此外,不同特点的数据挖掘模型为建筑业的信用评价提供了多种选择.

关键词:数据挖掘; 建筑企业; 信用评价; 模型;

【全文内容正在添加中】

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号