网络首发时间: 2014-03-05 17:15
稀有金属 2015,39(06),493-497 DOI:10.13373/j.cnki.cjrm.2015.06.003
电沉积法制备钯金纳米催化剂及其对甲醇催化性能的研究
路金林 王琳 李继东 王一雍 李胜利 崔小强
辽宁科技大学材料与冶金学院
吉林大学材料科学与工程学院
摘 要:
利用电沉积法直接在碳纸上制备了一系列钯金二元金属纳米催化剂。用场发射扫描电镜(FESEM)和X射线能谱(EDX)对催化剂的形貌、结构和组成进行了测试和分析,发现所沉积的颗粒基本为球形,粒径分布比较均匀,约为80 nm,钯和金基本按配比沉积。在碱性条件下研究了催化剂对甲醇的催化性能,结果表明所制备的二元催化剂对甲醇的氧化能力均大于一元催化剂。且当钯与金原子比为1∶1时,所制备的Pd1Au1催化剂对甲醇具有最高的催化活性和最好的稳定性。这种催化增强作用主要应归于钯金之间的协同效应,即金元素的存在可以帮助有效去除吸附在钯元素表面的CO,减小CO对催化剂的毒化作用。但第二种金属元素的引入量必须在一个合适的范围,才能最好地利用这种协同效应,使催化性能达到最佳。这种利用电沉积法直接在碳纸上制备二元纳米催化剂的方法,可以有效简化传统直接甲醇燃料电池(DMFC)中制作膜电极的复杂工艺过程,具有极大的应用价值。
关键词:
电沉积;纳米催化剂;直接甲醇燃料电池;钯金纳米催化剂;
中图分类号: TQ153;O643.36
收稿日期:2013-12-01
Pd-Au Nano-Catalysts Synthesized by Electrodeposition and Its Catalytic Performance for Methanol
Lu Jinlin Wang Lin Li Jidong Wang Yiyong Li Shengli Cui Xiaoqiang
School of Materials and Metallurgy,University of Science and Technology Liaoning
College of Materials Science and Engineering,Jilin University
Abstract:
Pd and Au binary metal nano-catalysts with different molar ratios were directly synthesized on carbon papers by an electrodeposition method. The morphology,structure and element composition were detected by field emission scanning electron microscopy( FESEM) and energy dispersive X-ray spectrum( EDX). It was found that the as-deposited particles were all ball-shaped and the distribution of the particle sizes was very uniform within a size range of ~ 80 nm. The molar ratios of Pd and Au elements in the particles were very close to the molar ratios of initial solution. The catalytic behaviors for methanol oxidation of the as-prepared catalysts were investigated in alkaline environments. The results indicated that all the binary-metal catalysts had better catalytic activities than the unitary-metal catalysts. When the molar ratio of the initial solution was 1∶ 1,the as-obtained Pd1Au1nano-catalyst showed the highest catalytic activity and the best stability. The catalytic enhancement phenomena were mainly due to the synergistic effect between the two different metal elements. The Au elements could effectively remove the adsorbed CO on the Pd surfaces,and therefore reduced the CO poisoning effect. But the additive amount of the second metal element must be in a specific range so that the synergistic effect could be fully utilized to generate the best catalytic performance. The way to directly deposit binary metal nano-catalysts on carbon papers by electrodeposition could simplify the process for preparing membrane electrode assembly in traditional direct methanol fuel cell( DMFC)and possessed a significant application potential.
Keyword:
electrodeposition; nano-catalyst; direct methanol fuel cell; Pd-Au nano-catalyst;
Received: 2013-12-01
石油资源的日益枯竭和环境污染的日益加重正在迫使人们寻找更高效的、环境友好的新能源。燃料电池是一种可以将存在于燃料中的化学能直接转化为电能的发电装置。它具有许多优点,如能量转化率高,环境友好,不排放氮和硫的氧化物等,因此被认为是21世纪最洁净高效的发电技术[1,2,3]。
直接甲醇燃料电池(DMFC)使用液态甲醇作为燃料,具有能量密度高、运输和储存方便、安全性高等优点,而且燃料更容易制备和再生,因此受到越来越广泛的关注[4,5,6]。传统的DMFC通常在强酸性下工作,然而强酸不仅会腐蚀电池材料,而且催化剂在酸性下的催化活性也相对较低。在DMFC中,最常用的金属催化剂是Pt,然而Pt抗CO毒化性差、且价格昂贵,在碱性下对甲醇的催化活性不高[7,8,9,10]。本文采用电沉积法,直接在碳纸上制备出钯金二元金属纳米催化剂,在碱性下对催化剂的催化活性和稳定性做了系统的研究。
1 实验
1.1 材料
实验中所使用的主要化学试剂有:氯化金(Au Cl3,纯度>99.9%,Sigma-Aldrich@),氯化钯(Pd Cl2,纯度>99.9%,Sigma-Aldrich@),甲醇(CH3OH,纯度>99.9%,上海国药化学试剂有限公司),氢氧化钾(分析纯,上海国药化学试剂有限公司),碳纸(Toray TGPH-060),去离子水(电阻率≥18.2 mΩ)等。
1.2 方法
分别按照0.002 mol·L-1Pd2+,0.002 mol·L-1Pd2++0.001 mol·L-1Au3+,0.002 mol·L-1Pd2++0.002 mol·L-1Au3+,0.002 mol·L-1Pd2++0.004mol·L-1Au3+和0.002 mol·L-1Au3+配置镀液,即保持Pd2+∶Au3+摩尔比分别为1∶0,1.0∶0.5,1∶1,1∶2,0∶1(最后所得到的催化剂分别表示为:Pd,Pd1Au0.5,Pd1Au1,Pd1Au2,Au),然后用1 mol·L-1稀盐酸将各镀液p H值调至2。将碳纸浸入到10%聚四氟乙烯(PTFE)乳液中,在80℃下干燥2 h,随之在340℃氮气气氛下热处理30 min,最终控制PTFE的含量为30%。将PTFE处理过的碳纸裁剪成1 cm2的小正方形作为工作电极,以1 cm2Pt电极作为辅助电极,在两电极体系下用电化学工作站(Autolab PGSTAT302)进行电沉积试验。采用直流法,电流密度为5 m A·cm-2,电镀时间为10 min。
用场发射扫描电镜(FESEM,JSM 6700-F)对催化剂的形貌及分布状态进行了表征;用X射线能谱仪(EDS)对催化剂的元素组成进行了定性和定量分析;用带有催化剂的碳纸作为工作电极、1cm2Pt电极作为辅助电极、饱和甘汞电极(SCE)作为参比电极,在三电极体系下对催化剂的电化学性能进行了表征。用循环伏安法(CV)和计时电流法(CA)在1.0 mol·L-1CH3OH+1.0 mol·L-1KOH的水溶液中,测试了催化剂对甲醇的催化活性和稳定性。在所有的电化学实验前,都要对溶液通氮气30 min,以排除溶液中的氧气,所有的电化学实验均在25℃下进行。
2 结果与讨论
图1为所制备的催化剂Pd1Au1不同放大倍数的FESEM图片,从图1可以明显地看出在碳纤维表面沉积了一层纳米粒子,基本为球状颗粒,粒径分布比较均匀、约为80 nm,不过颗粒间有一定的团聚现象。以上结果说明可以利用直流电沉积法直接在碳纸上面制备金属纳米催化剂。传统质子交换膜燃料电池制备电极过程需要先把金属催化剂沉积到炭黑表面,然后再添加粘结剂,通过涂覆、或者转印等工艺过程使之粘附在碳纸表面[11,12]。这种直接在碳纸上制备催化剂的方法过程简单、容易控制,且可以制备一元、二元和多元纳米金属催化剂,因此应该具有更广的研究和应用价值。
图2为不同催化剂的EDS测试结果,可以看出一元催化剂Pd和Au显示各自的特征峰,二元催化剂既具有Pd、也具有Au的特征峰。表1是各催化剂的元素组成。从表1可以看出Pd,Au的元素原子比和设定的比例基本一致。说明用电沉积法不仅可以在碳纸上直接制备二元金属催化剂,而且可以有效控制催化剂的元素组成。
(a),(b),(c)being different magnifications
图1 Pd1Au1的FESEM图片Fig.1 FESEM images of Pd1Au1catalyst
图2 不同催化剂的EDS图Fig.2 EDS results of different catalysts
表1 各催化剂的元素组成Table 1 Elemental compositions of different catalysts
(%,atom fraction)
图3是所制备的催化剂对甲醇的CV曲线,其对应的主要参数如表2所示,Es是起峰电压;jp是峰电流;Ep是峰电流所对应的峰电压。峰电流(jp)的大小直接反应催化剂对甲醇的氧化能力,Es越负说明氧化反应越容易发生。由表2可以看出Pd1Au1具有最高的峰电流,为213 m A·cm-2,几乎是Pd的3倍。另外,它的起峰电压也最负,为-0.74 V。这说明Pd1Au1更容易氧化甲醇,而且活性最高。Au对甲醇几乎没有活性,这和以前的报道是一致的[13]。不过二元催化剂的峰电流都大于一元催化剂的峰电流,表明所制备的二元催化剂对甲醇的氧化能力均大于一元催化剂。这主要应归于钯金之间的协同效应,因为Pd对甲醇的电催化过程中不可避免地会有中间产物CO的产生,CO会在Pd表面形成强烈的吸附,阻止甲醇的进一步吸附和氧化,使催化剂的活性降低而中毒[14,15,16]。Au的存在可以帮助去除吸附的CO,减小其对催化剂的影响,进而提高了催化剂的活性。而Pd1Au1的活性大于Pd1Au0.5和Pd1Au2的主要原因是:当Au的量较少时,不能及时除去吸附的CO,导致催化剂的活性有一定的降低;而当Au的量过多时,Au会覆盖住Pd的活性点,阻碍对甲醇的吸附和氧化,造成催化剂活性的降低。这说明第二种金属元素的引入量必须在一个合适的范围,才会更好地利用协同效应,使催化剂的性能达到最佳。
图3 催化剂在碱性下对甲醇的CV曲线,扫速为50 m V·s-1Fig.3CV curves of different catalysts for methanol oxidation in alkaline environment with a scan rate of 50 m V·s-1
表2 催化剂氧化甲醇的电化学参数Table 2Electrochemical parameters of different catalysts for methanol oxidation
图4是催化剂在碱性下氧化甲醇的CA曲线,显示了各催化剂的稳定性。从图4可以看出,在扫描开始时电流下降比较快,尤其是纯Pd,电流衰减速度最快,表明纯Pd抗CO毒化能力最低。在500 s时,Pd对甲醇几乎失去了活性,主要原因是Pd表面的活性点已经完全被CO所覆盖。而二元催化剂却体现出了较高的稳定性,尤其是Pd1Au1催化剂。这主要也是因为二元金属之间,即钯金之间的协同效应提高了催化剂的抗CO毒化能力,使催化剂在氧化甲醇的过程中具有较高的稳定性。
图4 催化剂在碱性下对甲醇的CA曲线,测试电压为-0.2 V Fig.4CA curves of different catalysts for methanol oxidation at-0.2 V
3 结论
1.利用电沉积法直接在碳纸上制备出了PdAu二元纳米催化剂,简化了传统DMFC中制作膜电极的复杂工艺过程。
2.在碱性条件下考查了催化剂对甲醇的催化性能,得到Pd1Au1催化剂对甲醇具有最高的催化活性和最好的稳定性。其催化增强机制主要是因为二元金属之间的协同效应提高了催化剂的抗CO毒化能力。但是第二种金属元素的引入量必须在一个合适的范围,才会更好地发挥协同效应,使催化剂的性能达到最佳。
参考文献
[1] Xu M L.Electrocatalytic performance of Pd-Ni nanowire arrays electrode for methanol electrooxidation in alkaline media[J].Rare Metals,2014,33(1):65.
[2] Lu J L,Tang H L,Xu C W,Jiang S P.Nafion membranes with ordered mesoporous structure and high water retention properties for fuel cell applications[J].Journal of Materials Chemistry,2012,22(12):5810.
[3] Lu J L,Lu S F,Jiang S P.Highly ordered mesoporous Nafion membranes for fuel cells[J].Chemical Communications,2011,47(11):3216.
[4] Nguyen V L,Cao M T,Yong Y,Nogami M,Ohtaki M.Platinum and palladium nano-structured catalysts for polymer electrolyte fuel cells and direct methanol fuel cell[J].Journal of Nanoscience and Nanotechnology,2013,13(7):479.
[5] Lu J L,Tang H L,Lu S F,Wu H W,Jiang S P.A novel inorganic proton exchange membrane based on self-assembled HPW-meso-silica for direct methanol fuel cells[J].Journal of Materials Chemistry,2011,21(18):6668.
[6] Lu J L,Li Z H,Jiang S P,Shen P K,Li L.Nanostructured tungsten carbide/carbon composites synthesized by a microwave heating method as supports of platinum catalysts for methanol oxidation[J].Journal of Power Sources,2012,202(15):56.
[7] Yu J M,Bi X G,Li Q.Review of separation methods of platinum group metals from spent auto-catalysts[J].Chinese Journal of Rare Metals,2013,37(3):485.(余建民,毕向光,李权.汽车失效催化剂之铂族金属分离方法[J].稀有金属,2013,37(3):485.)
[8] Feng R J,Li M,Liu J X.Preparation and catalytic activity of CO-resistant catalyst core-shell Au@Pt/C for methanol oxidation[J].Rare Metals,2012,31(5):451.
[9] Yi Q F,Niu F J.Novel nanoporous palladium catalyst for electroreduction of hydrogen peroxide[J].Rare Metals,2011,30(4):332.
[10] Lu J L,Xu C W,Jiang S P.Electrooxidation of ethanol on nanocrystalline Pd/C catalyst promoted with oxide in alkaline media[J].International Journal of Nanoscience,2009,8(1):203.
[11] Lu J L,Fang Q H,Li S L,Jiang S P.A novel phosphotungstic acid impregnated meso-Nafion multilayer membrane for proton exchange membrane fuel cells[J].Journal of Membrane Science,2013,427(2):101.
[12] Zhu T,Du C Y,Liu C T,Yin G P,Shi P F.Si O2stabilized Pt/C cathode catalyst for proton exchange membrane fuel cells[J].Applied Surface Science,2011,257(6):2371.
[13] Claudio B,Shen P K.Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells[J].Chemical Reviews,2009,109(9):4183.
[14] Wang A L,Xu H,Feng J X,Ding L X,Tong Y X,Li G R.Design of Pd/PANI/Pd sandwich-structured nanotube array catalysts with special shape effects and synergistic effects for ethanol electrooxidation[J].Journal of the American Chemical Society,2013,135(29):10703.
[15] Cui C H,Li H H,Yu J W,Gao M R,Yu S H.Ternary heterostructured nanoparticle tubes:a dual catalyst and its synergistic enhancement effects for O2/H2O2reduction[J].Angewandte Chemie International Edition,2010,49(48):9149.
[16] Lu J L,Lu S F,Wang D L,Yang M,Liu Z L,Xu C W,Jiang S P.Nano-structured PdxPt1-x/Ti anodes prepared by electrodeposition for alcohol electrooxidation[J].Electrochimica Acta,2009,54(23):5486.