简介概要

Highly Stable Silicon–Carbon–Nitrogen Composite Anodes from Silsesquiazane for Rechargeable Lithium-Ion Battery

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2016年第3期

论文作者:Yong Seok Kim Yong L.Joo Young-Je Kwark

文章页码:195 - 199

摘    要:Herein, we developed novel silicon–carbon–nitrogen(SiCN) composites synthesized by pyrolyzing silsesquiazane polymer as an anode material for rechargeable lithium-ion batteries. Among variable pyrolysis temperatures of 700 ℃, 1000 ℃ and 1300 ℃, the SiCN composites prepared at 1000 ℃ showed the highest capacity with outstanding battery cycle life by cyclic voltammetry and electrochemical impedance spectroscopy. Such good battery and electrochemical performances should be attributed to a proper ratio of carbon and nitrogen or oxygen in the SiCN composites. Furthermore, our SiCN electrode possessed better lithium ion conductivity than pure silicon nanoparticles. This work demonstrates that polymer-derived composites are among the promising strategies to achieve highly stable silicon anodes for rechargeable batteries.

详情信息展示

Highly Stable Silicon–Carbon–Nitrogen Composite Anodes from Silsesquiazane for Rechargeable Lithium-Ion Battery

Yong Seok Kim1,Yong L.Joo1,Young-Je Kwark2

1. School of Chemical & Biomolecular Engineering, Cornell University2. Department of Organic Materials and Fiber Engineering, Soongsil University

摘 要:Herein, we developed novel silicon–carbon–nitrogen(SiCN) composites synthesized by pyrolyzing silsesquiazane polymer as an anode material for rechargeable lithium-ion batteries. Among variable pyrolysis temperatures of 700 ℃, 1000 ℃ and 1300 ℃, the SiCN composites prepared at 1000 ℃ showed the highest capacity with outstanding battery cycle life by cyclic voltammetry and electrochemical impedance spectroscopy. Such good battery and electrochemical performances should be attributed to a proper ratio of carbon and nitrogen or oxygen in the SiCN composites. Furthermore, our SiCN electrode possessed better lithium ion conductivity than pure silicon nanoparticles. This work demonstrates that polymer-derived composites are among the promising strategies to achieve highly stable silicon anodes for rechargeable batteries.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号