Comparison of LiNi0.5Mn1.5O4 cathode materials prepared by different coprecipitation methods

来源期刊:中国有色金属学报(英文版)2007年增刊第1期(Part ⅡB)

论文作者:孙强 王志兴 李新海 郭华军 彭文杰

文章页码:917 - 922

Key words:lithium ion battery; LiNi0.5Mn1.5O4; coprecipitation method; precursor; spinel

Abstract: LiNi0.5Mn1.5O4 was synthesized by two different coprecipitation methods: composite carbonate process and composite hydroxide method. The effects of calcination temperature of precursors on the physical properties and electrochemical performance of the samples were investigated. The results of scanning electron microscopy(SEM) show that as calcination temperature increases, the crystallinity of the samples is improved, and their grain sizes are obviously increased. X-Ray diffraction(XRD) data show that the LiNi0.5Mn1.5O4 compounds obtained by two coprecipitation methods both exhibit a pure cubic spinel structure without any impurities. Furthermore, it is found that the samples prepared with relatively high temperature precursors present large initial discharge capacity (>125 mA·h/g) and excellent cycling stability with a capacity retention rate larger than 91% after 30 cycles at current density of 1 C. This probably derives from their higher crystallinity and larger grain sizes. However, the initial discharge capacity of LiNi0.5Mn1.5O4 synthesized by composite carbonate process is smaller than that prepared by composite carbonate process, but it shows better capacity retention ability.

基金信息:the National Basic Research Program of China

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号