简介概要

Effect of Nano-TiO2 Addition on the Hydration and Hardening Process of Sulphoaluminate Cement

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2015年第4期

论文作者:马保国 李海南 MEI Junpeng OUYANG Pei

文章页码:768 - 773

摘    要:The influences of nano-TiO2 on the setting time, hydration process, hydration products and morphology of sulphoaluminate cement were studied by Vicat apparatus, isothermal calorimetry, X-ray diffraction(XRD), thermal analysis and scanning electron microscopy(SEM). The experimental results show that the incorporation of nano-TiO2 can obviously promote the setting and hardening process of sulphoaluminate cement, and shorten the interval between the initial and final setting time, the hydration induction period of sulphoaluminate cement is significantly shortened and the acceleration period begins immediately, but the hydration exothermic rate at hydration stationary phase is not obviously impacted. The nano-TiO2 additives have influence on the formation rate and degree of crystallinity, but do not affect the type of hydration process. The structure of hydration products is compact at middle age, but their content and microstructure do not change.

详情信息展示

Effect of Nano-TiO2 Addition on the Hydration and Hardening Process of Sulphoaluminate Cement

马保国,李海南,MEI Junpeng,OUYANG Pei

State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology

摘 要:The influences of nano-TiO2 on the setting time, hydration process, hydration products and morphology of sulphoaluminate cement were studied by Vicat apparatus, isothermal calorimetry, X-ray diffraction(XRD), thermal analysis and scanning electron microscopy(SEM). The experimental results show that the incorporation of nano-TiO2 can obviously promote the setting and hardening process of sulphoaluminate cement, and shorten the interval between the initial and final setting time, the hydration induction period of sulphoaluminate cement is significantly shortened and the acceleration period begins immediately, but the hydration exothermic rate at hydration stationary phase is not obviously impacted. The nano-TiO2 additives have influence on the formation rate and degree of crystallinity, but do not affect the type of hydration process. The structure of hydration products is compact at middle age, but their content and microstructure do not change.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号