简介概要

Solid-state reaction synthesis and chemical stability studies in Nd-doped zirconolite-rich ceramics

来源期刊:JOURNAL OF RARE EARTHS2018年第5期

论文作者:Dan Yin Kuibao Zhang Le Peng Zongsheng He Yuan Liu Haibin Zhang Xirui Lu

文章页码:492 - 498

摘    要:In this study, Nd-bearing zirconolite-rich ceramics were prepared by solid-state reaction process using CaF2,ZrO2, Ti,TiO2, Fe2 O3 and Nd2O3 as the raw materials. Neodymium was used as trivalent actinide surrogate and designed to substitute the Ca and Zr sites of zirconolite with general stoichiometry of Ca1-xZr1-xNd2 xTi2O7(0≤x≤0.3). Density of Fe-Nd-O sample reaches a maximum value of 4.13 g/cm2 after being sintered at 1325 ℃ for 42 h. Three major phases, namely zirconolite, perovskite and pseudobrookite, are observed in all these samples. The EDX result shows that Nd2O3 can be successfully incorporated into the lattice structure of the prepared zirconolite-rich minerals and replace the Ca sites of zirconolite and perovskite with Fe3+ as the charge-compensating ion. Furthermore, the thermal conductivities are all in the range of 1.51-1.67 W/(m·K). The normalized elemental leaching rates of Ca and Nd in the Fe-Nd-0.2 sample keep in low values of 6.20 × 10-2 and 4.86 x 10-4 g/(m2·d) after 42 d.

详情信息展示

Solid-state reaction synthesis and chemical stability studies in Nd-doped zirconolite-rich ceramics

Dan Yin1,Kuibao Zhang1,2,Le Peng1,Zongsheng He1,Yuan Liu1,Haibin Zhang3,Xirui Lu2

1. State Key Laboratory Cultivation Base for Nonmetal Composite and Foundational Materials,Southwest University of Science and Technology2. National Defense Key Discipline Lab of Nuclear Waste and Environmental Safety, Southwest University of Science and Technology3. Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics

摘 要:In this study, Nd-bearing zirconolite-rich ceramics were prepared by solid-state reaction process using CaF2,ZrO2, Ti,TiO2, Fe2 O3 and Nd2O3 as the raw materials. Neodymium was used as trivalent actinide surrogate and designed to substitute the Ca and Zr sites of zirconolite with general stoichiometry of Ca1-xZr1-xNd2 xTi2O7(0≤x≤0.3). Density of Fe-Nd-O sample reaches a maximum value of 4.13 g/cm2 after being sintered at 1325 ℃ for 42 h. Three major phases, namely zirconolite, perovskite and pseudobrookite, are observed in all these samples. The EDX result shows that Nd2O3 can be successfully incorporated into the lattice structure of the prepared zirconolite-rich minerals and replace the Ca sites of zirconolite and perovskite with Fe3+ as the charge-compensating ion. Furthermore, the thermal conductivities are all in the range of 1.51-1.67 W/(m·K). The normalized elemental leaching rates of Ca and Nd in the Fe-Nd-0.2 sample keep in low values of 6.20 × 10-2 and 4.86 x 10-4 g/(m2·d) after 42 d.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号