简介概要

Microstructures and Thermal Properties of Sn–Bi–Zn–Ga Alloys as Heat Transfer and Heat Storage Materials

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2019年第3期

论文作者:王青萌 程晓敏 LI Yuanyuan YU Guoming LIU Zhi

文章页码:676 - 683

摘    要:Low melting point alloy is a potential high-temperature heat transfer medium because of the high thermal conductivity, low solidus temperature and wide range of use temperature. Consequently, we investigated the possibility of using Sn–Bi–Zn–Ga alloys as heat storage and heat transfer material. Moreover, we investigated the microstructure and phase compositions by electron probe micro-analysis(EPMA) and X-ray diffusion(XRD). Results show that the new structures and phases are formed in the alloy matrix with Ga additions, which lead to the improvement of the thermal properties. An extensive thermophysical characterization of the Sn–Bi–Zn–Ga alloys has been performed by differential scanning calorimeter(DSC) analysis. The addition of Ga lowers the peak temperature and increases the heat capacity of the alloys. The thermal expansion of the test alloys increases with increasing temperature and the densities decreases with Ga additions. As the density, specific heat capacity and thermal diffusivity change with temperature and physical state, the thermal conductivity of the alloys first decreases and then increases. These results demonstrate the feasibility of using Sn–Bi–Zn–Ga alloys as the high-temperature heat transfer fluid.

详情信息展示

Microstructures and Thermal Properties of Sn–Bi–Zn–Ga Alloys as Heat Transfer and Heat Storage Materials

王青萌1,程晓敏1,LI Yuanyuan1,YU Guoming2,LIU Zhi2

1. School of Materials Science and Engineering,Wuhan University of Technology2. School of Mechanical and Electrical Engineering,Huanggang Normal University

摘 要:Low melting point alloy is a potential high-temperature heat transfer medium because of the high thermal conductivity, low solidus temperature and wide range of use temperature. Consequently, we investigated the possibility of using Sn–Bi–Zn–Ga alloys as heat storage and heat transfer material. Moreover, we investigated the microstructure and phase compositions by electron probe micro-analysis(EPMA) and X-ray diffusion(XRD). Results show that the new structures and phases are formed in the alloy matrix with Ga additions, which lead to the improvement of the thermal properties. An extensive thermophysical characterization of the Sn–Bi–Zn–Ga alloys has been performed by differential scanning calorimeter(DSC) analysis. The addition of Ga lowers the peak temperature and increases the heat capacity of the alloys. The thermal expansion of the test alloys increases with increasing temperature and the densities decreases with Ga additions. As the density, specific heat capacity and thermal diffusivity change with temperature and physical state, the thermal conductivity of the alloys first decreases and then increases. These results demonstrate the feasibility of using Sn–Bi–Zn–Ga alloys as the high-temperature heat transfer fluid.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号