Modelling of Time Dependency of Chloride Diffusion Coefficient in Cement Paste
来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2010年第4期
论文作者:张明中
文章页码:687 - 691
摘 要:A computer-based model and method was presented to predict the time dependency of chloride diffusion coefficients in cement paste. The HYMOSTRUC3D model was applied to generate a 3D representative elementary volume (REV) of cement paste. In the simulation of microstructure, both of cement hydration and chloride binding were considered. With the simulated microstructure of cement paste, the finite element method was applied to simulate the diffusion process of chloride through the saturated cement paste. Based on the Fick’s first law, the chloride diffusion coefficient can be calculated. In this method, the influences of age and w/c ratio on the chloride diffusion coefficient were evaluated. The simulated chloride diffusivities with various w/c at different time were compared to experimental data obtained from the literature. The experimental results indicate that the chloride diffusion coefficient decreases with the increase of time and the decrease of w/c ratio. The trend of simulated relationship (diffusion coefficient vs time, diffusion coefficient vs w/c ratio) fits very well with the experiments.
张明中
摘 要:A computer-based model and method was presented to predict the time dependency of chloride diffusion coefficients in cement paste. The HYMOSTRUC3D model was applied to generate a 3D representative elementary volume (REV) of cement paste. In the simulation of microstructure, both of cement hydration and chloride binding were considered. With the simulated microstructure of cement paste, the finite element method was applied to simulate the diffusion process of chloride through the saturated cement paste. Based on the Fick’s first law, the chloride diffusion coefficient can be calculated. In this method, the influences of age and w/c ratio on the chloride diffusion coefficient were evaluated. The simulated chloride diffusivities with various w/c at different time were compared to experimental data obtained from the literature. The experimental results indicate that the chloride diffusion coefficient decreases with the increase of time and the decrease of w/c ratio. The trend of simulated relationship (diffusion coefficient vs time, diffusion coefficient vs w/c ratio) fits very well with the experiments.
关键词: