一种亚弹黏塑性晶体塑性模型的显示积分算法

来源期刊:中国有色金属学报(英文版)2014年第7期

论文作者:K. ZHANG B. HOLMEDAL S. DUMOULIN O. S. HOPPERSTAD

文章页码:2401 - 2407

关键词:晶体塑性;亚弹性;超弹性;向前欧拉积分法

Key words:crystal plasticity; hypo-elasticity; hyper-elasticity; forward Euler integration

摘    要:建立了一种速率相关的晶体塑性模型的显示积分算法。该晶体塑性模型将速度梯度张量分解为晶格和塑性部分来描述运动学,并利用亚弹性方程和Jaumann应力率计算柯西应力。该晶体塑性模型及新提出的显示积分算法已被用于一种商业有限元程序,并模拟了多晶的单轴压缩和轧制实验过程。实验结果表明,该晶体塑性模型的显示积分算法具有很高的精确性和可靠性。相对利用乘法分解变形梯度张量方法建立的超弹黏塑性模型及其对应的显示积分算法,该亚弹性模型的显示积分算法除了速度稍快外,其精确性与超弹性模型是一样的。

Abstract: An explicit integration scheme for rate-dependent crystal plasticity (CP) was developed. Additive decomposition of the velocity gradient tensor into lattice and plastic parts is adopted for describing the kinematics; the Cauchy stress is calculated by using a hypo-elastic formulation, applying the Jaumann stress rate. This CP scheme has been implemented into a commercial finite element code (CPFEM). Uniaxial compression and rolling processes were simulated. The results show good accuracy and reliability of the integration scheme. The results were compared with simulations using one hyper-elastic CPFEM implementation which involves multiplicative decomposition of the deformation gradient tensor. It is found that the hypo-elastic implementation is only slightly faster and has a similar accuracy as the hyper-elastic formulation.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号