Preparation and Characterization of Antibacterial Zn2+-Exchanged Montmorillonites
来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2010年第5期
论文作者:施庆珊 谭绍早
文章页码:725 - 729
摘 要:Zn-montmorillonites(Zn-MMTs) as antibacterial compounds were prepared by an ion-exchange reaction. The reaction time, initial pH value and molar ratios of CEC influencing zinc content in Zn-MMTs were investigated, and Zn-MMTs were characterized by means of EDX, XRD, XPS, and SEM. The results of bacterial growth tests were confirmed by determination of the minimum inhibition concentrations (MICs) and minimum bactericidal concentrations (MBCs). The experimental results show that the zinc is confirmed as bivalent zinc state, the d001 basal spacing of Zn-MMTs is enlarged with the enhancement of the zinc content, and the particles of Zn-MMTs are formed with irregular shape. Moreover, the antibacterial activity of Zn-MMTs increases with increasing the zinc content, and Zn-MMT-3 containing 6.76 mass% of zinc exhibits optimum antibacterial activity against Escherichia coli and Staphylococcus aureus.
施庆珊1,谭绍早2
1. Guangdong Institute of Microbiology2. Department of Chemistry, Jinan University
摘 要:Zn-montmorillonites(Zn-MMTs) as antibacterial compounds were prepared by an ion-exchange reaction. The reaction time, initial pH value and molar ratios of CEC influencing zinc content in Zn-MMTs were investigated, and Zn-MMTs were characterized by means of EDX, XRD, XPS, and SEM. The results of bacterial growth tests were confirmed by determination of the minimum inhibition concentrations (MICs) and minimum bactericidal concentrations (MBCs). The experimental results show that the zinc is confirmed as bivalent zinc state, the d001 basal spacing of Zn-MMTs is enlarged with the enhancement of the zinc content, and the particles of Zn-MMTs are formed with irregular shape. Moreover, the antibacterial activity of Zn-MMTs increases with increasing the zinc content, and Zn-MMT-3 containing 6.76 mass% of zinc exhibits optimum antibacterial activity against Escherichia coli and Staphylococcus aureus.
关键词: