简介概要

一种RBF神经网络高精度算法研究及应用

来源期刊:东北大学学报(自然科学版)2009年第9期

论文作者:林辉 张国忠 谢正义

文章页码:1314 - 2662

关键词:神经网络;径向基函数(RBF);高精度算法;网络参数;优化;

摘    要:剖析了RBF神经网络基本算法的原理以及激励函数参量与隐层单元数量按经验选取所带来的问题.基于RBF神经网络结构,以网络的权阈值为设计变量,网络误差为目标函数,通过合理的动态变量排序,构建了一种RBF神经网络的新的高精度算法,并编制计算程序.与RBF网络基本算法相比,这种算法是以权阈值为未知变量的真实优化过程,实现了RBF神经网络的高精度计算.从方程论理论出发,给出了网络隐层结构的合理确定方法.通过实例的程序分析,表明了该优化算法具有较高的样本拟合与插值精度,为进一步理论研究与工程应用提供基础.

详情信息展示

一种RBF神经网络高精度算法研究及应用

郑夕健1,张国忠1,谢正义2

1. 东北大学机械工程与自动化学院2. 沈阳建筑大学交通与机械工程学院

摘 要:剖析了RBF神经网络基本算法的原理以及激励函数参量与隐层单元数量按经验选取所带来的问题.基于RBF神经网络结构,以网络的权阈值为设计变量,网络误差为目标函数,通过合理的动态变量排序,构建了一种RBF神经网络的新的高精度算法,并编制计算程序.与RBF网络基本算法相比,这种算法是以权阈值为未知变量的真实优化过程,实现了RBF神经网络的高精度计算.从方程论理论出发,给出了网络隐层结构的合理确定方法.通过实例的程序分析,表明了该优化算法具有较高的样本拟合与插值精度,为进一步理论研究与工程应用提供基础.

关键词:神经网络;径向基函数(RBF);高精度算法;网络参数;优化;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号