基于不同分块多特征优化融合的人脸识别研究
来源期刊:东北大学学报(自然科学版)2017年第3期
论文作者:贾明兴 杜俊强 宋鹏飞 田澍
文章页码:310 - 314
关键词:LBP;LPQ;Gabor;最优权值;多重分块;人脸识别;
摘 要:针对光照、姿态、表情等复杂情形下人脸识别率较低的问题,提出基于不同分块多特征优化融合的人脸识别方法.首先考虑了局部二值模式、局部相位量化特征和小波变换特征.进一步,考虑单一分块算法会使分割线周边信息不能完整提取,从而丢失对人脸识别的有用特征,提出了人脸灰度图像多重分块的方法.最后,采用遗传算法对不同分块多特征进行权值寻优,得到最优权值.在大规模人脸数据集FRGC2.0数据库上进行实验四验证,验证率达到95.31%(FAR0.1%),首选识别率为99.06%,相比于前期文献,该算法能多方位提取人脸特征信息,提高人脸识别率,且所用特征较少.
贾明兴1,杜俊强1,宋鹏飞1,田澍2
1. 东北大学信息科学与工程学院2. 东北大学软件学院
摘 要:针对光照、姿态、表情等复杂情形下人脸识别率较低的问题,提出基于不同分块多特征优化融合的人脸识别方法.首先考虑了局部二值模式、局部相位量化特征和小波变换特征.进一步,考虑单一分块算法会使分割线周边信息不能完整提取,从而丢失对人脸识别的有用特征,提出了人脸灰度图像多重分块的方法.最后,采用遗传算法对不同分块多特征进行权值寻优,得到最优权值.在大规模人脸数据集FRGC2.0数据库上进行实验四验证,验证率达到95.31%(FAR0.1%),首选识别率为99.06%,相比于前期文献,该算法能多方位提取人脸特征信息,提高人脸识别率,且所用特征较少.
关键词:LBP;LPQ;Gabor;最优权值;多重分块;人脸识别;