基于专家系统的个性化推荐系统的设计与实现
来源期刊:软件工程2016年第6期
论文作者:郭青 孙健
文章页码:22 - 27
关键词:推荐系统;专家推荐;协同过滤;Hadoop;分布式计算;
摘 要:随着互联网及物流运输行业的快速发展,越来越多的人选择在网上挑选服饰类商品。基于服饰类商品具有重复购买率低、搭配性强、受当季流行因素影响大等特点,提出了一种基于协同过滤与专家推荐的混合推荐策略,在为商品引入流行因子的基础之上,为用户提供了一种更为个性化、时尚化的推荐结果。由于业务系统涵盖了海量的商品及用户数据,单机计算系统难以满足推荐系统对计算资源的需求,在基于Hadoop平台的基础之上,构建了一套离线分布式推荐系统,为解决大数据应用背景下的数据计算问题提供了可行性案例。
郭青,孙健
北京化工大学信息科学与技术学院
摘 要:随着互联网及物流运输行业的快速发展,越来越多的人选择在网上挑选服饰类商品。基于服饰类商品具有重复购买率低、搭配性强、受当季流行因素影响大等特点,提出了一种基于协同过滤与专家推荐的混合推荐策略,在为商品引入流行因子的基础之上,为用户提供了一种更为个性化、时尚化的推荐结果。由于业务系统涵盖了海量的商品及用户数据,单机计算系统难以满足推荐系统对计算资源的需求,在基于Hadoop平台的基础之上,构建了一套离线分布式推荐系统,为解决大数据应用背景下的数据计算问题提供了可行性案例。
关键词:推荐系统;专家推荐;协同过滤;Hadoop;分布式计算;