Effects of Silica Aerogel Content on Microstructural and Mechanical Properties of Poly(methyl methacrylate)/Silica Aerogel Dual-scale Cellular Foams Processed in Supercritical Carbon Dioxide
来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2016年第4期
论文作者:谷晓丽 罗国强 ZHANG Ruizhi ZHANG Jian LI Meijuan SHEN Qiang WANG Jin ZHANG Lianmeng
文章页码:750 - 756
摘 要:A novel poly(methyl-methacrylate)/silica aerogel(PMMA/SA) dual-scale cellular foam was synthesized with internal mixing followed by the supercritical carbon dioxide foaming process.The effects of silica aerogel content on the microstructural and mechanical performance of the foams were investigated by SEM,TEM analysis,and mechanical tests.The experimental results suggest that the employment of silica aerogel granule as addictive can distinctly improve the morphological feature as well as the mechanical performance in comparison to neat PMMA foam by uniformizing cell size distribution,decreasing cell size and increasing cell density.And dual-scale cells including micrometric cells of 3-10 μm and nanometric cells of about 50 nm existed in the structure of foams resulting from the retained original framework structure of silica aerogel,which has not been described in other studies with the addition of various fillers.Furthermore,the mechanical strength was significantly elevated even with a small amount of silica aerogel resulting from the unique microstructure,decreased cell size and enhanced cell walls.The compressive strength was 18.12 MPa and the flexural strength was 18.90 MPa by adding 5wt% and 2wt% silica aerogel,respectively.These results demonstrate the potential to synthesize PMMA/SA dual-scale cellular foams to be used as structural materials with the advantages of low density and high strength.
谷晓丽1,罗国强1,ZHANG Ruizhi1,ZHANG Jian1,LI Meijuan2,SHEN Qiang1,WANG Jin1,ZHANG Lianmeng1
1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology2. School of Chemistry,Chemical Engineering and Life Science,Wuhan University of Technology
摘 要:A novel poly(methyl-methacrylate)/silica aerogel(PMMA/SA) dual-scale cellular foam was synthesized with internal mixing followed by the supercritical carbon dioxide foaming process.The effects of silica aerogel content on the microstructural and mechanical performance of the foams were investigated by SEM,TEM analysis,and mechanical tests.The experimental results suggest that the employment of silica aerogel granule as addictive can distinctly improve the morphological feature as well as the mechanical performance in comparison to neat PMMA foam by uniformizing cell size distribution,decreasing cell size and increasing cell density.And dual-scale cells including micrometric cells of 3-10 μm and nanometric cells of about 50 nm existed in the structure of foams resulting from the retained original framework structure of silica aerogel,which has not been described in other studies with the addition of various fillers.Furthermore,the mechanical strength was significantly elevated even with a small amount of silica aerogel resulting from the unique microstructure,decreased cell size and enhanced cell walls.The compressive strength was 18.12 MPa and the flexural strength was 18.90 MPa by adding 5wt% and 2wt% silica aerogel,respectively.These results demonstrate the potential to synthesize PMMA/SA dual-scale cellular foams to be used as structural materials with the advantages of low density and high strength.
关键词: