简介概要

Effects of Silica Aerogel Content on Microstructural and Mechanical Properties of Poly(methyl methacrylate)/Silica Aerogel Dual-scale Cellular Foams Processed in Supercritical Carbon Dioxide

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2016年第4期

论文作者:谷晓丽 罗国强 ZHANG Ruizhi ZHANG Jian LI Meijuan SHEN Qiang WANG Jin ZHANG Lianmeng

文章页码:750 - 756

摘    要:A novel poly(methyl-methacrylate)/silica aerogel(PMMA/SA) dual-scale cellular foam was synthesized with internal mixing followed by the supercritical carbon dioxide foaming process.The effects of silica aerogel content on the microstructural and mechanical performance of the foams were investigated by SEM,TEM analysis,and mechanical tests.The experimental results suggest that the employment of silica aerogel granule as addictive can distinctly improve the morphological feature as well as the mechanical performance in comparison to neat PMMA foam by uniformizing cell size distribution,decreasing cell size and increasing cell density.And dual-scale cells including micrometric cells of 3-10 μm and nanometric cells of about 50 nm existed in the structure of foams resulting from the retained original framework structure of silica aerogel,which has not been described in other studies with the addition of various fillers.Furthermore,the mechanical strength was significantly elevated even with a small amount of silica aerogel resulting from the unique microstructure,decreased cell size and enhanced cell walls.The compressive strength was 18.12 MPa and the flexural strength was 18.90 MPa by adding 5wt% and 2wt% silica aerogel,respectively.These results demonstrate the potential to synthesize PMMA/SA dual-scale cellular foams to be used as structural materials with the advantages of low density and high strength.

详情信息展示

Effects of Silica Aerogel Content on Microstructural and Mechanical Properties of Poly(methyl methacrylate)/Silica Aerogel Dual-scale Cellular Foams Processed in Supercritical Carbon Dioxide

谷晓丽1,罗国强1,ZHANG Ruizhi1,ZHANG Jian1,LI Meijuan2,SHEN Qiang1,WANG Jin1,ZHANG Lianmeng1

1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology2. School of Chemistry,Chemical Engineering and Life Science,Wuhan University of Technology

摘 要:A novel poly(methyl-methacrylate)/silica aerogel(PMMA/SA) dual-scale cellular foam was synthesized with internal mixing followed by the supercritical carbon dioxide foaming process.The effects of silica aerogel content on the microstructural and mechanical performance of the foams were investigated by SEM,TEM analysis,and mechanical tests.The experimental results suggest that the employment of silica aerogel granule as addictive can distinctly improve the morphological feature as well as the mechanical performance in comparison to neat PMMA foam by uniformizing cell size distribution,decreasing cell size and increasing cell density.And dual-scale cells including micrometric cells of 3-10 μm and nanometric cells of about 50 nm existed in the structure of foams resulting from the retained original framework structure of silica aerogel,which has not been described in other studies with the addition of various fillers.Furthermore,the mechanical strength was significantly elevated even with a small amount of silica aerogel resulting from the unique microstructure,decreased cell size and enhanced cell walls.The compressive strength was 18.12 MPa and the flexural strength was 18.90 MPa by adding 5wt% and 2wt% silica aerogel,respectively.These results demonstrate the potential to synthesize PMMA/SA dual-scale cellular foams to be used as structural materials with the advantages of low density and high strength.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号