简介概要

Microstructure and Mechanical Properties of a Spray-Formed Superalloy

来源期刊:Acta Metallurgica Sinica2014年第6期

论文作者:Fuwei Kang Fuyang Cao Xuemin Zhang Hongyan Yue Yicheng Feng

文章页码:1063 - 1069

摘    要:The microstructural evolution and mechanical properties of a spray-formed superalloy were studied in this paper. Based on a better understanding of the microstructural evolution of the spray-formed superalloy during solution treatment, an optimum solution treatment process was obtained, namely, at 1,140 °C for 6 h, and air cooling(AC). The effects of the ageing treatments on the mechanical properties of the post-solution-treated spray-formed superalloy were evaluated using ageing harden curves and tensile testing. The results indicated that the maximum hardness value was achieved at 850 °C for 8 h, AC. Due to co-precipitation of primary and secondary c0 precipitates during the heat treatment,the spray-formed superalloy obtained an excellent combination of yield strength(YS = 1,110 MPa), ultimate tensile strength(UTS = 1,503 MPa), ductility(elongation, EL = 21%) and excellent stress rupture properties at 650 °C(UTS = 1,209 MPa, EL = 15.8%). The heat treatment also improved the rupture life at 650 °C/950 MPa and 750 °C/539 MPa up to 140 h without rupturing. The tensile-fractured surfaces exhibit ductile transgranular failure feature. The optimum heat treatment process was determined to be 1,140 °C/6 h+850 °C/8 h+AC.

详情信息展示

Microstructure and Mechanical Properties of a Spray-Formed Superalloy

Fuwei Kang1,Fuyang Cao2,Xuemin Zhang1,Hongyan Yue1,Yicheng Feng1

1. School of Materials Science and Engineering, Harbin University of Science and Technology2. School of Materials Science and Engineering, Harbin Institute of Technology

摘 要:The microstructural evolution and mechanical properties of a spray-formed superalloy were studied in this paper. Based on a better understanding of the microstructural evolution of the spray-formed superalloy during solution treatment, an optimum solution treatment process was obtained, namely, at 1,140 °C for 6 h, and air cooling(AC). The effects of the ageing treatments on the mechanical properties of the post-solution-treated spray-formed superalloy were evaluated using ageing harden curves and tensile testing. The results indicated that the maximum hardness value was achieved at 850 °C for 8 h, AC. Due to co-precipitation of primary and secondary c0 precipitates during the heat treatment,the spray-formed superalloy obtained an excellent combination of yield strength(YS = 1,110 MPa), ultimate tensile strength(UTS = 1,503 MPa), ductility(elongation, EL = 21%) and excellent stress rupture properties at 650 °C(UTS = 1,209 MPa, EL = 15.8%). The heat treatment also improved the rupture life at 650 °C/950 MPa and 750 °C/539 MPa up to 140 h without rupturing. The tensile-fractured surfaces exhibit ductile transgranular failure feature. The optimum heat treatment process was determined to be 1,140 °C/6 h+850 °C/8 h+AC.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号