简介概要

基于粗糙集和BP神经网络的滑坡易发性评价

来源期刊:煤田地质与勘探2017年第6期

论文作者:唐睿旋 晏鄂川 唐薇

文章页码:129 - 138

关键词:滑坡易发性评价;因子筛选;粗糙集;遗传算法;BP神经网络;

摘    要:区域滑坡易发性评价是国土规划和滑坡中长期防治的重要依据。为进一步提高滑坡易发性评价的准确性,以恩施市龙凤镇为研究区,运用地理信息系统GIS技术,获取了包括工程岩组、坡度、地质构造等在内的13个初始评价因子,利用基于遗传约简算法的粗糙集理论对初始评价因子进行属性约简,去掉冗余属性后获得最小约简,即8个核评价因子:工程岩组、高程、地形曲率、道路、水系、坡度、坡向、径流强度指数,并以此作为BP神经网络的输入层,构建RS-BPNN预测模型,获得滑坡易发性指数LSI及滑坡易发性等级分区图。其中高易发区面积占总面积的12.82%,该区包含的滑坡面积占总滑坡面积的78.11%,通过ROC曲线测试,模型预测精度为90.9%。结果表明,RS-BPNN模型预测性能良好,进一步提高了滑坡易发性评价的精度和准确性,有较高的工程实用价值。

详情信息展示

基于粗糙集和BP神经网络的滑坡易发性评价

唐睿旋1,晏鄂川1,唐薇2

1. 中国地质大学(武汉)2. 贵阳学院

摘 要:区域滑坡易发性评价是国土规划和滑坡中长期防治的重要依据。为进一步提高滑坡易发性评价的准确性,以恩施市龙凤镇为研究区,运用地理信息系统GIS技术,获取了包括工程岩组、坡度、地质构造等在内的13个初始评价因子,利用基于遗传约简算法的粗糙集理论对初始评价因子进行属性约简,去掉冗余属性后获得最小约简,即8个核评价因子:工程岩组、高程、地形曲率、道路、水系、坡度、坡向、径流强度指数,并以此作为BP神经网络的输入层,构建RS-BPNN预测模型,获得滑坡易发性指数LSI及滑坡易发性等级分区图。其中高易发区面积占总面积的12.82%,该区包含的滑坡面积占总滑坡面积的78.11%,通过ROC曲线测试,模型预测精度为90.9%。结果表明,RS-BPNN模型预测性能良好,进一步提高了滑坡易发性评价的精度和准确性,有较高的工程实用价值。

关键词:滑坡易发性评价;因子筛选;粗糙集;遗传算法;BP神经网络;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号