基于粗糙集和BP神经网络的滑坡易发性评价
来源期刊:煤田地质与勘探2017年第6期
论文作者:唐睿旋 晏鄂川 唐薇
文章页码:129 - 138
关键词:滑坡易发性评价;因子筛选;粗糙集;遗传算法;BP神经网络;
摘 要:区域滑坡易发性评价是国土规划和滑坡中长期防治的重要依据。为进一步提高滑坡易发性评价的准确性,以恩施市龙凤镇为研究区,运用地理信息系统GIS技术,获取了包括工程岩组、坡度、地质构造等在内的13个初始评价因子,利用基于遗传约简算法的粗糙集理论对初始评价因子进行属性约简,去掉冗余属性后获得最小约简,即8个核评价因子:工程岩组、高程、地形曲率、道路、水系、坡度、坡向、径流强度指数,并以此作为BP神经网络的输入层,构建RS-BPNN预测模型,获得滑坡易发性指数LSI及滑坡易发性等级分区图。其中高易发区面积占总面积的12.82%,该区包含的滑坡面积占总滑坡面积的78.11%,通过ROC曲线测试,模型预测精度为90.9%。结果表明,RS-BPNN模型预测性能良好,进一步提高了滑坡易发性评价的精度和准确性,有较高的工程实用价值。
唐睿旋1,晏鄂川1,唐薇2
1. 中国地质大学(武汉)2. 贵阳学院
摘 要:区域滑坡易发性评价是国土规划和滑坡中长期防治的重要依据。为进一步提高滑坡易发性评价的准确性,以恩施市龙凤镇为研究区,运用地理信息系统GIS技术,获取了包括工程岩组、坡度、地质构造等在内的13个初始评价因子,利用基于遗传约简算法的粗糙集理论对初始评价因子进行属性约简,去掉冗余属性后获得最小约简,即8个核评价因子:工程岩组、高程、地形曲率、道路、水系、坡度、坡向、径流强度指数,并以此作为BP神经网络的输入层,构建RS-BPNN预测模型,获得滑坡易发性指数LSI及滑坡易发性等级分区图。其中高易发区面积占总面积的12.82%,该区包含的滑坡面积占总滑坡面积的78.11%,通过ROC曲线测试,模型预测精度为90.9%。结果表明,RS-BPNN模型预测性能良好,进一步提高了滑坡易发性评价的精度和准确性,有较高的工程实用价值。
关键词:滑坡易发性评价;因子筛选;粗糙集;遗传算法;BP神经网络;