基于逻辑回归算法的乳腺癌诊断数据分类研究
来源期刊:软件工程2018年第2期
论文作者:刘蕾
文章页码:21 - 40
关键词:乳腺癌数据集;逻辑回归分类算法;预测;
摘 要:乳腺癌是世界范围内妇女死亡的主要原因之一,准确的诊断是乳腺癌治疗中最重要的步骤之一。本文详细讲解了逻辑回归模型的原理知识,结合Sklearn机器学习库的Logistic Regression算法对乳腺癌威斯康辛(诊断)数据集进行了数据分类。由于该数据集分类标签划分为两类(恶性、良性),能够很好地适用于逻辑回归模型。用基于两个特征的逻辑回归模型得到的分类结果表明,当选取平均半径和最大周长两个特征时,分类精度最高(95.72%)。与以往的方法相比,该方法在性能上有所提高。
刘蕾
大连东软信息学院
摘 要:乳腺癌是世界范围内妇女死亡的主要原因之一,准确的诊断是乳腺癌治疗中最重要的步骤之一。本文详细讲解了逻辑回归模型的原理知识,结合Sklearn机器学习库的Logistic Regression算法对乳腺癌威斯康辛(诊断)数据集进行了数据分类。由于该数据集分类标签划分为两类(恶性、良性),能够很好地适用于逻辑回归模型。用基于两个特征的逻辑回归模型得到的分类结果表明,当选取平均半径和最大周长两个特征时,分类精度最高(95.72%)。与以往的方法相比,该方法在性能上有所提高。
关键词:乳腺癌数据集;逻辑回归分类算法;预测;