Microstructure and properties of aging Cu–Cr–Zr alloy
来源期刊:Rare Metals2014年第2期
论文作者:Kun Wang Ke-Fu Liu Jing-Bo Zhang
文章页码:134 - 138
摘 要:The crystallography and morphology of precipitate particles in a Cu matrix were studied using an aged Cu–Cr–Zr alloy by transmission electron microscopy(TEM) and high-resolution transmission electron microscopy(HRTEM). The tensile strength and electrical conductivity of this alloy after various aging processes were tested. The results show that two kinds of crystallographic structure associated with chromium-rich phases, fcc and bcc structure, exist in the peak-aging of the alloy. The orientation relationship between bcc Cr precipitate and the matrix exhibits Nishiyama–Wasserman orientation relationship. Two kinds of Zr-rich phases(Cu4Zr and Cu5Zr)can be identified and the habit plane is parallel to {111}Cu plane during the aging. The increase in strength is ascribed to the precipitation of Cr- and Zr-rich phase.
Kun Wang1,2,Ke-Fu Liu1,Jing-Bo Zhang3
1. Institute of Electric Lighting Source, Fudan University2. No.23 Research Institute, China Electronics Technology Group Corporation3. No. 23 Research Institute, China Electronics Technology Group Corporation
摘 要:The crystallography and morphology of precipitate particles in a Cu matrix were studied using an aged Cu–Cr–Zr alloy by transmission electron microscopy(TEM) and high-resolution transmission electron microscopy(HRTEM). The tensile strength and electrical conductivity of this alloy after various aging processes were tested. The results show that two kinds of crystallographic structure associated with chromium-rich phases, fcc and bcc structure, exist in the peak-aging of the alloy. The orientation relationship between bcc Cr precipitate and the matrix exhibits Nishiyama–Wasserman orientation relationship. Two kinds of Zr-rich phases(Cu4Zr and Cu5Zr)can be identified and the habit plane is parallel to {111}Cu plane during the aging. The increase in strength is ascribed to the precipitation of Cr- and Zr-rich phase.
关键词: