简介概要

基于自适应粒子群支持向量机的短期电力负荷预测

来源期刊:东北大学学报(自然科学版)2007年第9期

论文作者:刘佳 李丹 高立群 鲁顺

文章页码:1229 - 1232

关键词:粒子群优化;自适应变异;支持向量机;负荷预测;

摘    要:针对粒子群优化算法存在易陷入局部最优点的缺点,提出了一种新的基于平均粒距的自适应粒子群优化算法(ASPO).该算法利用种群多样性信息对惯性权重进行非线性调整,并在算法的后期引入速度变异算子和交换算子,使算法摆脱后期易于陷入局部最优点的束缚,同时又保持前期搜索速度快的特性.将该算法应用到基于支持向量机的短期电力负荷预测模型中,对支持向量机的参数进行优化.对某电网的短期负荷预测实际算例仿真分析表明,所提出的基于APSO-SVM方法的预测精度明显优于传统的SVM方法,且速度较快,因此,该算法用于短期电力负荷预测是有效可行的.

详情信息展示

基于自适应粒子群支持向量机的短期电力负荷预测

刘佳,李丹,高立群,鲁顺

摘 要:针对粒子群优化算法存在易陷入局部最优点的缺点,提出了一种新的基于平均粒距的自适应粒子群优化算法(ASPO).该算法利用种群多样性信息对惯性权重进行非线性调整,并在算法的后期引入速度变异算子和交换算子,使算法摆脱后期易于陷入局部最优点的束缚,同时又保持前期搜索速度快的特性.将该算法应用到基于支持向量机的短期电力负荷预测模型中,对支持向量机的参数进行优化.对某电网的短期负荷预测实际算例仿真分析表明,所提出的基于APSO-SVM方法的预测精度明显优于传统的SVM方法,且速度较快,因此,该算法用于短期电力负荷预测是有效可行的.

关键词:粒子群优化;自适应变异;支持向量机;负荷预测;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号