基于最优特征集和马氏距离KNN分类的机械故障分类方法研究
来源期刊:机械设计与制造2017年第7期
论文作者:孟亚辉
文章页码:98 - 102
关键词:故障诊断;KNN算法;马氏距离;局部嵌入算法;主成分分析;
摘 要:针对传统K近邻(K-Nearest Neighbor,KNN)算法在进行机械故障信号识别的过程中,无法挖掘特征参数之间关联性,提出一种基于最优特征集的马氏距离KNN分类方法,根据机械故障信号的非线性特点,使用小波分解获得时频域故障特征,通过局部嵌入算法(Locally Linear Embedding,LLE)来进行二次故障特征提取,从而获得多相关特征集并对其进行主成分分析得到最优特征集,最后通过数值仿真信号和齿轮故障数据的分析了方法的有效性。结果表明该方法能够有效挖掘特征参数之间关联性,增加不同故障之间区分度,从而提高故障识别精度。
孟亚辉
广东石油化工学院
摘 要:针对传统K近邻(K-Nearest Neighbor,KNN)算法在进行机械故障信号识别的过程中,无法挖掘特征参数之间关联性,提出一种基于最优特征集的马氏距离KNN分类方法,根据机械故障信号的非线性特点,使用小波分解获得时频域故障特征,通过局部嵌入算法(Locally Linear Embedding,LLE)来进行二次故障特征提取,从而获得多相关特征集并对其进行主成分分析得到最优特征集,最后通过数值仿真信号和齿轮故障数据的分析了方法的有效性。结果表明该方法能够有效挖掘特征参数之间关联性,增加不同故障之间区分度,从而提高故障识别精度。
关键词:故障诊断;KNN算法;马氏距离;局部嵌入算法;主成分分析;