简介概要

基于主元分析与KNN算法的旋转机械故障识别方法

来源期刊:机械设计与制造2017年第6期

论文作者:张金萍 白广彬

文章页码:23 - 54

关键词:主元分析;K近邻;旋转机械;故障识别;

摘    要:针对旋转机械高维故障数据难以被准确辨识的情况,提出了一种基于主元分析(principal component analysis,PCA)和K近邻(K-nearest neighbour,KNN)算法的旋转机械故障识别方法。合理选取出各状态信号的时域、频域特征指标构造成高维特征空间,输入给主元分析算法进行降维处理,提取出低维敏感特征,将约简后的状态样本输入给KNN算法进行故障识别。滚动轴承和转子的实验结果表明,该方法能够很好的约简高维故障样本特征,在实现样本数据可视化的同时准确识别出各故障样本。与传统方法相比,该方法具有结构简单、识别率高等优点,对机械故障诊断研究具有一定的工程意义。

详情信息展示

基于主元分析与KNN算法的旋转机械故障识别方法

张金萍,白广彬

沈阳化工大学机械工程学院

摘 要:针对旋转机械高维故障数据难以被准确辨识的情况,提出了一种基于主元分析(principal component analysis,PCA)和K近邻(K-nearest neighbour,KNN)算法的旋转机械故障识别方法。合理选取出各状态信号的时域、频域特征指标构造成高维特征空间,输入给主元分析算法进行降维处理,提取出低维敏感特征,将约简后的状态样本输入给KNN算法进行故障识别。滚动轴承和转子的实验结果表明,该方法能够很好的约简高维故障样本特征,在实现样本数据可视化的同时准确识别出各故障样本。与传统方法相比,该方法具有结构简单、识别率高等优点,对机械故障诊断研究具有一定的工程意义。

关键词:主元分析;K近邻;旋转机械;故障识别;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号