基于主元分析与KNN算法的旋转机械故障识别方法
来源期刊:机械设计与制造2017年第6期
论文作者:张金萍 白广彬
文章页码:23 - 54
关键词:主元分析;K近邻;旋转机械;故障识别;
摘 要:针对旋转机械高维故障数据难以被准确辨识的情况,提出了一种基于主元分析(principal component analysis,PCA)和K近邻(K-nearest neighbour,KNN)算法的旋转机械故障识别方法。合理选取出各状态信号的时域、频域特征指标构造成高维特征空间,输入给主元分析算法进行降维处理,提取出低维敏感特征,将约简后的状态样本输入给KNN算法进行故障识别。滚动轴承和转子的实验结果表明,该方法能够很好的约简高维故障样本特征,在实现样本数据可视化的同时准确识别出各故障样本。与传统方法相比,该方法具有结构简单、识别率高等优点,对机械故障诊断研究具有一定的工程意义。
张金萍,白广彬
沈阳化工大学机械工程学院
摘 要:针对旋转机械高维故障数据难以被准确辨识的情况,提出了一种基于主元分析(principal component analysis,PCA)和K近邻(K-nearest neighbour,KNN)算法的旋转机械故障识别方法。合理选取出各状态信号的时域、频域特征指标构造成高维特征空间,输入给主元分析算法进行降维处理,提取出低维敏感特征,将约简后的状态样本输入给KNN算法进行故障识别。滚动轴承和转子的实验结果表明,该方法能够很好的约简高维故障样本特征,在实现样本数据可视化的同时准确识别出各故障样本。与传统方法相比,该方法具有结构简单、识别率高等优点,对机械故障诊断研究具有一定的工程意义。
关键词:主元分析;K近邻;旋转机械;故障识别;