稀有金属 2021,45(02),226-239 DOI:10.13373/j.cnki.cjrm.XY20080052
氢气分离提纯用钯及钯合金膜的研究进展
殷朝辉 杨占兵 李帅
北京科技大学冶金与生态工程学院
有研科技集团有限公司国家有色金属新能源材料与制品工程技术研究中心
有研工程技术研究有限公司
摘 要:
伴随着煤、石油和天然气等传统化石能源在使用过程中产生的温室效应、能源危机等弊端,更清洁的氢能逐渐受到关注。氢能在能源、交通、工业等领域具有广阔的应用前景,尤其以燃料电池车为代表的交通领域是氢能初期应用的突破口与主要市场。而氢燃料电池对氢气浓度要求较高,氢气中即使微量的H2 S和CO杂质也会严重降低电池性能。因此,需要对氢气进行分离纯化去除杂质气体。钯及钯合金膜由于对氢气具有极高的选择渗透性而应用于氢气的分离提纯,然而钯及钯合金膜的化学稳定性问题一直制约其广泛应用。本文介绍了纯Pd膜,Pd-Ag,Pd-Y,Pd-Pt,Pd-Cu和Pd-Au二元合金膜以及Pd-Ag-M,Pd-Cu-M三元合金膜氢渗透与抗杂质气体毒化方面的研究进展及存在问题。纯钯膜在低温下存在氢脆现象且易被杂质气体毒化;与纯钯膜相比,钯基二元合金膜成本较低,Pd-Ag,Pd-Y合金膜透氢性能较好而抗杂质气体毒化性能较差,Pd-Pt,Pd-Cu和Pd-Au合金膜则具有相反的特性;钯基三元合金膜在一定程度上提高了二元合金膜的透氢性能并改善了抗杂质气体毒化的性能,但仍存在合金元素偏析、各组元成分比例不易精确控制等问题,且钯基三元合金膜较之二元合金膜合成工艺更复杂、成本更高。最后,对钯合金膜未来的研究方向进行了展望。
关键词:
氢气 ;分离纯化 ;钯合金膜 ;抗毒化 ;
中图分类号: TQ116.2;TQ051.893;TM911.4
作者简介: 殷朝辉(1995-),男,安徽阜阳人,硕士研究生,研究方向:氢纯化分离材料,E-mail:18895561052@163.com;; *杨占兵,副教授,电话:18800030569,E-mail:yangzhanbing@ustb.edu.cn;
收稿日期: 2020-08-31
基金: 国家科技部ITER计划专项(2017YFE0301502); 科技部国家重点研发计划项目(2019YFB1505000)资助;
Progress in Pd and Pd Alloy Membranes for Hydrogen Separation and Purification
Yin Zhaohui Yang Zhanbing Li Shuai
School of Metallurgical and Ecological Engineering,University of Science and Technology Beijing
National Engineering Research Center of Nonferrous Metals Materials and Products for New Energy,GRINM Group Co.,Ltd.
GRIMAT Engineering Institute Co.,Ltd.
Abstract:
With the greenhouse effect and energy crisis caused by the use of traditional fossil energy,such as coal,oil and natural gas,cleaner hydrogen energy, especially high-purity hydrogen,has gradually attracted much attention.Hydrogen energy has wide application prospects in energy,transportation,industry,and other fields,especially the transportation field represented by fuel cell vehicles is the breakthrough and main market for the initial application of hydrogen energy.Hydrogen fuel cells have high requirements for hydrogen purity,and even traces of H2 S and CO impurities in hydrogen will seriously deteriorate the performance of the cell.Therefore,it is essential to remove impurity gases to purify the hydrogen.Palladium and palladium alloy membranes have been used in the separation and purification of hydrogen due to their extremely high selective permeability to hydrogen,but the low chemical stability of palladium and palladium alloy membranes restricts their wide application.In the present paper,we reviewed the research progress and existing problems in hydrogen permeation and impurity gas poisoning resistance of pure Pd membranes,Pd-Ag,Pd-Y,Pd-Pt,Pd-Cu and Pd-Au binary alloy membranes,and Pd-Ag-M and Pd-Cu-M ternary alloy membranes,and forecasted the future research direction.Pure palladium membrane had good selective permeability to hydrogen,but its mechanical properties and chemical stability were poor.When the temperature was lower than 300℃,the transformation of a phase to β phase would cause the palladium membrane hydrogen embrittlement,and the membrane was easy to be poisoned by H2 S,CO,etc.The competitive adsorption of H2 S and CO on the membrane surface would occupy the dissociation site of hydrogen,thereby reducing the hydrogen permeability.Among them,the poisoning effect was more significant at low temperature and high CO concentration,but the poisoning effect was reversible.Compared with pure palladium membrane,the cost of palladium-based binary alloy membrane was lower.Pd-Ag and Pd-Y alloy membranes had better hydrogen permeability but poor resistance to impurity gas poisoning.In addition,during the hydrogen separation process,the Pd-Ag alloy membrane would form hydrogen bubbles along the grain boundaries,eventually forming pinholes and causing the membrane to fail;the Pd-Y alloy membrane was easily oxidized,resulting in the decrease of hydrogen permeability.Pd-Pt,Pd-Cu and PdAu alloy membranes had the opposite characteristics,and the anti-poisoning performance of impurity gas was excellent,but the hydrogen permeability was poor.Among them,Pd-Pt alloy membrane had good high temperature stability and sulfur poisoning resistance,but the hydrogen permeability was low.The application of Pd-Cu alloy membrane in large-scale H2 separation still had some problems,such as poor thermal stability and chemical stability,Cu segregation on the membrane surface,H2 permeation hysteresis,and imperfect alloy annealing process,etc.Although Pd-Cu alloy membrane could resist the poisoning of impurity gases to a certain extent,its inhibitory effect was limited,and it could not completely eliminate the influence caused by H2 S,CO and other impurity poisons.It was still a difficult point to synthesize a Pd-Cu alloy membrane with both the high anti-poisoning performance of the fee structure and the high hydrogen permeability performance of the bcc structure.Au in the Pd-Au alloy membrane exhibited a strong tendency to surface segregation and greatly improved the solubility of hydrogen.These two characteristics made the stability of the membrane greatly reduced at higher temperatures.The existence of local cracks in the gold layer of the Pd-Au composite membrane reduced the selective permeability to hydrogen.And in the presence of H2 S,the effect of temperature and exposure time on the hydrogen permeability of PdAu alloy membranes remained to be studied,and the mechanism of the poisoning effect of multi-element impurity gases was still unclear.Compared with the palladium-based binary alloy membrane,the palladium-based ternary alloy membrane improved both the anti-poisoning performance and the permeability performance.Adding a third alloying element such as Cu and Au with high anti-poisoning properties to the Pd-Ag binary alloy could significantly enhance the anti-poisoning properties of the Pd-Ag alloy and maintain or even enhance its hydrogen permeability.In order to improve the hydrogen permeability of Pd-Pt,Pd-Cu and Pd-Au alloy membranes,alloy elements with good hydrogen permeability such as Ag and Y were usually added to make palladium-based ternary alloy membranes,and for Pd-Cu alloy,adding Au and Zr could further improv its anti-poisoning performance.But palladium-based ternary alloy still had some problems,such as alloy element segregation,difficult to achieve precise control of the composition ratio of each component,etc.,moreover,the synthesis process of palladium-based ternary alloy membrane was more complex and more costly than that of binary alloy membrane.As to the future research direction of palladium alloy membrane,the problem of reduced membrane stability and durability caused by the poisoning of impurity gases such as CO and H2 S needed to be well solved.Especially,when the palladium membrane was exposed to CO atmosphere,the influence mechanism of PdC formed at high temperature relative to the palladium membrane should be clarified.In addition,the coupling poisoning mechanism of the palladium alloy membrane when multiple impurity gases coexist remained to be studied.Finally,we hoped to explore an evaluation method for predicting the service life of palladium and palladium alloy membrane by combining theoretical calculation with experiments.
Keyword:
hydrogen; separation and purification; palladium alloy membrane; anti-poisoning;
Received: 2020-08-31
人类目前对能源的需求主要依赖于以煤、石油、天然气等为主的化石能源。化石能源不可再生且储量有限,还存在全球变暖和环境污染等问题
[1 ,2 ,3 ,4 ]
。氢能作为一种清洁二次能源,具有安全、高效、可持续等优点
[5 ]
,正逐渐受到关注。氢能的大规模开发使用将在一定程度上改善能源供应不足的问题;基于氢燃料电池的新能源汽车还能有效缓解传统汽车尾气排放造成的环境污染问题。高纯氢气的制取、储存、输送是氢燃料电池汽车大规模推广的重要前提
[6 ,7 ,8 ]
。然而,氢气中的CO、硫化物、卤化物等杂质会对燃料电池中的Pt催化剂造成显著毒化,导致电池性能衰减或寿命缩短。因此,氢的分离和纯化在氢能燃料电池的应用中发挥着关键性作用。
钯膜对氢气具有选择渗透性,在氢气的分离提纯方面具有非常广阔的应用前景,钯膜氢分离纯化设备简单且可以连续生产,尤其在制备超纯氢气方面具有不可替代的优势,可以弥补大型工业化设备诸如变压吸附技术的不足,解决变压吸附过程中痕量杂质如H2 S,CO等难以脱除的问题。但是钯价格昂贵,且纯钯膜在低于300℃时会产生氢脆现象
[9 ]
,易被H2 S
[10 ]
,CO
[11 ]
和CH4
[12 ]
等杂质气体毒化,导致膜的透氢性能降低。为了克服氢脆并提高钯膜的抗毒化性能,研究人员将目光投向钯合金膜。
合金元素增加了钯膜的渗透性和机械性能。然而部分钯基二元合金膜的性能并不完美,甚至针对同一体系的研究结果也存在差异。Pd-Ag,PdY合金膜氢渗透率较高,尤其Pd-Y合金具有良好的力学性能,延伸率、硬度、抗拉强度高,但对H2 S,CO等杂质气体的耐受性差
[13 ,14 ]
,Pd-Cu,PdAu合金膜则相反
[15 ,16 ,17 ]
。Pd中添加Pt有利于提高合金的抗毒化性能和热稳定性,但透氢性能会受到限制
[18 ,19 ,20 ]
。添加少量的Ru即可大幅改善钯膜的热稳定性和机械性能,抑制缺陷生长
[21 ,22 ]
。Gade等
[23 ]
报道Ru含量为4.5%~10.0%的Pd-Ru合金的氢渗透率与纯钯相似,Ru最佳含量为5%,而Knapton
[24 ]
的研究却表明Pd95 Ru5 合金的氢渗透率仅为纯钯的三分之一。综合透氢性能、热稳定性能和机械性能等,钯基二元合金膜在合金系选择以及杂质气体对其毒化特性等方面亟需深入研究。
三元合金膜被认为具有改善渗透性和抗毒化性能的潜力。Kamakoti和Sholl
[25 ]
基于密度泛函理论(DFT)计算表明,向Pd-Cu和Pd-Au合金中加入第三种合金元素,在保持其自身高抗毒化性能的同时具有更高的H2 通量。Tarditi和Cornaglia
[26 ]
通过化学镀制备了Pd-Ag-Cu三元合金膜,发现Pd68 Ag7 Cu25 三元合金的渗透性高于Pd-Cu合金膜。然而受化学镀工艺的限制,成分均匀且比例精确可控的钯基三元合金膜的制备仍具有一定难度。
本文综述了钯及钯合金膜在氢气分离纯化应用中的研究进展,重点阐述了钯基二元合金膜及三元合金膜透氢和抗杂质气体毒化方面的研究现状及存在问题,并对钯及钯合金膜未来的研究方向提出了展望。
1 纯钯膜透氢研究概述
许多金属都具有较高的氢渗透性,如Nb,V,Ta等,但氢气在这些金属表面的解离吸附存在活化屏障,需要额外输入能量
[27 ]
。而氢气在金属钯表面的解离几乎不需要活化能
[28 ]
。因此与其它金属相比,钯对氢气的解离具有更高的催化活性,能够使氢分子解离为单原子形式,使其快速扩散通过钯晶格。
纯钯膜在应用过程中仍面临着一些挑战,钯膜抗氢脆性能较差。Pd-H相图如图1所示
[29 ]
,体系的氢吸收发生在不同的两相中,即低浓度Pd-H固溶体相(α相)和高浓度氢化物相(β相),这两相在fcc结构中具有不同的晶格参数。纯钯膜在低于300℃时会发生α→β相变,产生内部应力,导致晶格膨胀和晶体结构变形,造成氢脆,最终导致膜的机械失效
[9 ]
。
此外,纯钯膜的化学稳定性差,H2 S,CO等杂质气体在钯膜表面的竞争吸附会占据氢气的解离位点,降低氢气的渗透率
[30 ,31 ,32 ]
。如图2所示
[33 ]
,即使是10×10-6 的H2 S也会严重降低钯膜透氢性。H2 S与Pd反应形成Pd4 S,其晶体结构与纯Pd差异较大,会在Pd膜表面产生应力并形成裂纹。Pd4 S膜的透氢速率比纯钯膜低一个数量级,使得钯膜透氢速率降低,且影响不可逆
[30 ,34 ]
。
图1 Pd-H相图
Fig.1 Pd-H phase diagram
[29]
图2 在H2S/H2气氛下,φ(H2S)=10×10-6,Pd膜透氢与透氮量变化(T=400℃,Δp=0.1 MPa),其中φ(H2S)为H2S/H2混合气体中H2S的体积分数,T为Pd膜测试温度,Δp为Pd膜渗透侧和滞留侧的压差
Fig.2 H2 and N2 permeances of Pd composite membrane un-der H2 S/H2 at 400℃(φ(H2 S)=1.0×10-6 in H2 S/H2 at-mosphere and the differential pressure between feed and permeate side is 0.1 MPa)
[33]
CO对钯膜毒化作用的影响与温度和自身浓度密切相关,如图3所示
[35 ]
,在所有温度下,H2 通量随CO浓度的增加而降低,并且CO的毒化效应在低温下更严重。而在高温下,观察到CO两种不同的影响:CO在钯膜表面的催化分解引起的CO吸附和碳沉积,并且有Pd C相生成
[36 ]
。Amandusson等
[37 ]
研究发现,在温度高于300℃时,CO对氢渗透几乎没有影响,而在温度低于150℃时,氢几乎不渗透通过膜。Li等
[38 ]
研究结果表明,CO和蒸汽共存时也会降低Pd膜氢的渗透率,降低程度取决于CO和蒸汽的加入量。纯钯膜在实际应用中存在机械性能和化学稳定性差的缺点,而解决这些问题的一个最有效且实际可行的办法是将Pd与其他金属结合制成合金膜。
图3 钯膜在100~250℃范围内归一化氢气通量与CO浓度的关系
Fig.3 Normalized H2 flux across the 25-μm-thick Pd mem-brane versus CO concentration in feed gas in the 100~250℃temperature range
[35]
2 钯基二元合金膜透氢及抗毒化研究
纯钯膜在实际应用过程中存在氢脆、易被杂质气体毒化等问题,为了改善钯膜的综合性能,通常在钯膜中添加其他合金元素形成钯合金。其中,IB族元素Ag,Cu和Au等是最常使用的合金元素,此外,还包括铂族和稀土金属元素如Y和Ce等。
2.1 Pd-Ag合金膜
Pd-Ag合金膜因能够抑制氢脆,提高钯膜的透氢性能而受到广泛关注。研究表明Ag含量为23%时氢渗透率达到最大值
[39 ]
,Peters等
[40 ]
采用磁控溅射法制备的Pd77 Ag23 膜在400℃时的氢渗透速率为3.2×10-8 mol·m-1 ·s-1 ·Pa-0.5 ,几乎是纯钯的两倍。
然而Pd-Ag合金膜对硫化物和CO等杂质气体敏感。即使是短时间暴露于微量的H2 S中,Pd-Ag合金膜的H2 通量也会受到大幅度抑制,同时会在膜表面生成Pd4 S,造成不可逆的毒化
[41 ,42 ]
。Lovvik和Opalka
[43 ]
通过第一性原理能带结构计算表明H2 S和Pd之间的强相互作用还会导致Pd在膜表面偏析,从而改变膜的体积和表面性质。CO也会严重降低Pd-Ag合金膜的氢气渗透率,如图4所示,低温时其影响更为显著
[44 ]
。Alkali和Abdullahi
[45 ]
研究了CO,CO2 ,CH4 和N2 共存时对Pd-Ag合金膜渗透性能的影响,结果表明这些气体共存时严重降低了合金膜的氢渗透速率。此外,在氢气分离过程中,Pd-Ag合金膜沿晶界处会形成充满氢的空腔,即氢气泡,气泡进一步生长形成针孔,会导致膜的非选择性渗透损失并损坏其长期稳定性
[46 ]
。
2.2 Pd-Y合金膜
Pd-Y合金膜在钯合金中具有较高的氢渗透率。如图5所示,与Pd-Ag和Pd-Ce合金相比,Pd-Y合金在350℃以下具有最佳的透氢性能
[47 ]
。然而,和Pd-Ag合金膜一样,Pd-Y合金膜易被杂质气体毒化。Peng等
[48 ]
研究表明,CO在550℃下会与Pd-Y合金反应生成YO,并且会在膜表面出现碳和碳酸盐的沉积,从而抑制氢进入Pd-Y合金,并导致溶解在Pd-Y合金中的氢含量降低。
制约Pd-Y合金膜广泛应用的另一个因素是其表面易被氧化。Fort等
[49 ]
研究表明,Pd-Y合金膜表面极易被氧化生成一薄层Y2 O3 薄膜,与膜主体结合并不紧密,且会大量消耗Pd-Y膜表面的合金元素Y,导致沿晶界产生裂纹,进而降低膜的氢渗透率。
虽然Pd-Ag和Pd-Y合金膜的透氢性能优越,但易被杂质气体毒化限制了其推广应用,因此可以通过加入具有高抗毒化性能的合金元素制成钯基三元合金膜,以增强其抗毒化性能。
图4 Pd-Ag合金膜在不同温度的归一化H2通量与CO浓度的关系
Fig.4 Normalized H2 permeance of Pd-Ag membrane as a function of CO concentration at different temperatures
[44]
图5 Pd-稀土与Pd-Ag氢渗透率的比较
Fig.5 Comparison of hydrogen permeabilities of Pd-rare earth with Pd-Ag
[47]
2.3 Pd-Pt合金膜
Pd-Pt合金膜具有良好的抗硫中毒性能。暴露于1000×10-6 H2 S时,Pd-Pt合金膜原始氢通量仅受到50%的抑制,并在移除H2 S后可以完全恢复
[50 ]
。Lewis等
[20 ]
研究表明,Pt会抑制氢的溶解和扩散,导致膜的氢渗透性降低,因此Pd-Pt合金膜的氢通量低于纯钯膜。而与纯钯膜相比,水煤气变换(WGS)反应进气混合物对其抑制作用降低,Pd-Pt合金膜在这种环境下显示出更高的氢通量。虽然Pd-Pt合金膜的透氢性能相对其他合金不高,但Pt能显著提高膜在长期运行中的机械性能和热稳定性,并减少泄漏,如图6所示,Pd-Pt合金膜的N2 泄漏率比纯钯低一个数量级
[51 ]
。
Pd-Pt合金膜具有良好的高温稳定性和抗硫中毒性能,但氢气渗透率较低,因此,可以考虑加入第三种透氢性能较好的Ag,Y等合金元素制成PdPt基三元合金膜。
2.4 Pd-Cu合金膜
Pd-Cu合金膜在低温下能抑制氢脆,且价格相对低廉,与纯Pd膜和Pd-Ag合金膜相比具有更强的抗H2 S毒化作用。
研究人员在Pd-Cu合金理论和计算方面做了大量研究。Kamakoti等
[52 ]
采用第一性原理计算比较了Pd、Pd70 Cu30 ,Pd47 Cu53 的氢渗透率,如图7所示,Pd70 Cu30 合金仅以fcc结构存在,而Pd47 Cu53 合金在低温时呈体心立方(bcc)结构,且bcc-Pd47 Cu53 合金的渗透性高于fcc-Pd47 Cu53 合金,这两种合金膜的氢气渗透率均低于纯钯膜。Liu等
[53 ]
基于密度泛函理论(DFT),利用第一性原理计算研究了bcc-Pd Cu,fcc-Pd Cu和fcc-Pd中氢溶解度、扩散率和渗透率。氢在Pd Cu和Pd间隙位置的溶解度主要由其结合能和振动频率决定,Pd Cu和Pd的氢扩散主要由活化能控制,在一定温度下,氢渗透率的下降顺序为fcc-Pd→bcc-Pd Cu→fcc-Pd Cu
[50 ]
。Nandha等
[54 ]
采用DFT计算研究了氢原子通过Pd-Cu合金模型的渗透步骤,对于厚度小于0.5μm的膜,高温(T>237℃)下的氢渗透受表面过程的控制,而在较低的温度下,可能受扩散或H原子再结合过程控制。
图6 550℃时Pt含量对Pd-Pt合金膜热稳定性和渗透性的影响
Fig.6 Influence of Pt content on thermal stability and hydro-gen permeability of Pd-Pt alloy membrane at 550℃
[51]
图7 预测和测量得到的Pdx Cu100-x膜的氢渗透率,其中x=100,70,47,所有均为原子百分比(图例中显示了每组实验的膜厚度。理论预测用实线符号和实线表示。虚线表示使用100μm膜进行的实验测量数据)
Fig.7 Predicted and measured H2 permeabilities through Pdx- Cu100–x membranes with x=100,70 and 47,all in atom-ic fraction(The membrane thickness for each set of ex-periments is indicated in legend.Theoretical predic-tions are shown with solid symbols and solid curves.Dashed curves indcate the experimental measurementswith a 100-μm membrane
[52]
)
Pd-Cu合金膜的透氢速率与Cu含量密切相关,Cu含量为40%(质量分数)时氢渗透速率最高
[55 ]
。而且,不同温度和合金成分的Pd-Cu合金,晶体结构不同,如图8所示
[56 ]
。氢在bcc-Pd Cu合金中的扩散速率比fcc-Pd Cu合金高两个数量级
[57 ]
,此外,bcc-Pd Cu合金膜具有良好的低温稳定性,在400℃时的H2 气氛中连续运行100 h氢通量仍保持稳定
[57 ]
。与透氢性能相反,fcc-Pd Cu合金的抗毒化性能高于bcc-Pd Cu合金
[58 ]
。fcc与bcc相同时存在于Pd-Cu合金时,由于这两种物相的氢溶解度存在差异,其不成比例的晶格膨胀引起机械应力,在合金膜中形成针孔,导致合金膜的使用寿命大幅缩短
[59 ]
。
研究表明,硫会可逆的吸附在Pd-Cu膜表面,移除H2 S后氢渗透率恢复到初始值,但选择性会降低
[60 ]
。当原料气中含有CO时,随着CO浓度增加,氢在Pd-Cu合金膜上的渗透速率降低,低温下CO的毒害作用更为严重。CO在在Pd-Cu膜表面的竞争吸附会阻止H2 在这些位置的解离,并抑制氢在膜上的传输,但由于CO与Pd-Cu合金表面的相互作用弱于Pd,因此Pd-Cu合金比纯Pd更耐CO中毒
[61 ]
。而多种杂质气体共存时的抑制作用更为严重。当Pd-Cu合金膜暴露于CH4 、CO2 和水蒸汽三者共存的气氛中时,其透氢速率会严重降低,随着混合物中CH4 ,CO2 和蒸汽量的增加,抑制效果也随之增强。而且,由于CH4 ,CO2 和蒸汽与氢在Pd-Cu合金膜表面上的竞争性吸附,它们的抑制效果在不同温度下明显不同。在相同条件下,蒸汽对高温(500℃)下氢通量的抑制作用明显高于CH4 和CO2 ,而在低温(350和250℃)时则相反
[62 ]
。
图8 Pd-Cu合金相图
Fig.8 Phase diagram of Pd-Cu alloys
[56]
Pd-Cu合金具有fcc和bcc两种结构,随着温度和Pd含量的变化,会发生两种结构的转变,透氢性能和抗毒化性能也会随之改变。在Pd-Cu相中,由于存在fcc/bcc混合相区域,会导致bcc混合相边界线周围的Pd Cu膜出现H2 渗透滞后现象。该区域内,相同温度下,在450至600℃之间的可混溶间隙内,冷却过程(fcc→bcc)中的H2 渗透显示出比加热(bcc→fcc)时更低的通量
[63 ]
。渗透滞后源于加热和冷却过程中相变经历的非等价途径,如图9所示,在冷却过程中,fcc到bcc相的转变受到亚稳态fcc-Pd Cu相的阻碍
[63 ]
。合成既具有fcc结构的高抗毒化性能又有bcc结构的高透氢性能的Pd-Cu合金膜目前仍然是一个难点,值得关注。
图9 Pd-Cu加热和冷却过程中非等价相变示意图
Fig.9 Schematic presentation of Pd-Cu phase diagram around Pd47 Cu53 (%,atom fraction)alloy illustrating nonequiva-lent phase transformation pathways during heating and cooling
[63]
Pd-Cu合金膜虽然能够在一定程度上抵抗杂质气体的毒化,但其抑制作用有限,并不能完全消除H2 S,CO等杂质毒体造成的影响。在研究钯膜的中毒效应时,必须考虑表面偏析,因为合金成分与硫等强吸附物种的相互作用可能导致表面偏析,并可能造成表面不可逆的化学和结构改性,最终导致膜失效。Miller等
[64 ]
研究了Pd-Cu膜的退火温度和制备方法对其表面区域的影响,结果表明Pd在近表面区域富集而Cu在顶层区域富集。尽管表面区域和顶层成分几乎相同,但氢的吸收受到影响。这种现象是由于727℃的退火温度破坏了原子的局部秩序,使得钯和铜原子从有序的分布转变为无序的随机分布状态。
化学镀(ELP)常用来制备Pd-Cu膜,通常由连续镀和高温合金化组成,因为在共沉积镀液中很难获得稳定的沉积速率,而且由于Pd的还原电位较高,可能会发生Pd置换沉积的Cu,因此,通过ELP合成来精确控制Pd-Cu膜的组成仍具有一定难度。传统的Pd-Cu膜在N2 或H2 气氛下退火时间很长
[65 ]
,当退火温度高于膜组成金属的Tamman温度(金属熔点的0.3~0.4倍)时,不利于膜的完整性
[66 ]
。
Pd-Cu合金膜在大规模H2 分离中的应用仍存在着膜的热稳定性和化学稳定性差、Cu在膜表面偏析、H2 渗透滞后以及合金退火工艺不够完善等问题,这些问题的解决可以使得Pd-Cu合金膜具有更加广泛的应用。
2.5 Pd-Au合金膜
与复杂的Pd-Cu合金相比,Pd-Au合金在所有组成下均形成具有fcc结构的连续固溶体
[67 ]
。Au含量为11%(原子分数)是Pd-Au合金膜在高温下达到最大氢渗透率的添加量,如图10所示,Au含量20%的Pd-Au合金膜与纯Pd膜相比具有更高的氢渗透率值
[68 ]
,但是当继续增大合金中金含量时,渗透率开始迅速降低。添加Au可以抑制氢脆,同时提升合金膜的选择渗透性。Iulianelli等
[69 ]
研究表明,Pd-Au合金膜在400℃时的H2 /N2 选择系数约为500,H2 /CO2 和H2 /CH4 选择系数分别为625和350,且工作600 h后仍保持稳定。
与纯Pd膜相比,Pd-Au合金膜具有优越的抗H2 S
[69 ]
和CO
[71 ]
毒化性能。Chen和Ma
[72 ]
研究了Pd92 Au8 合金膜在高温下对H2 S的抗性,在55×10-6 H2 S暴露后没有形成大量的硫化物并且氢渗透能够完全恢复,如图11所示,表明Pd92 Au8 膜氢渗透速率降低是由于H2 S的解离吸附。Coulter等
[18 ]
研究表明,大量加入Au能够抑制硫化物形成,从而改善钯基膜的透氢性和稳定性。高Au浓度(41%)的PdAu合金膜在CO气氛中暴露48 h,膜氢气渗透率没有明显降低,相反,纯钯膜在相同的暴露时间内完全降解失效
[73 ]
。Pd-Au合金膜还可以减少氢化物形成引起的脆化,并提高对硫化合物的催化中毒和腐蚀降解的抵抗力,同时产生相对较高的氢渗透率。
图1 0 不同温度下,渗透率随Au含量变化示意图
Fig.10 Permeabilities as a function of Au content at different temperatures
[68]
但是在Pd-Au合金膜中Au表现出很强的表面偏析倾向,并大大提高氢的溶解度,这两个特性使得在较高温度下膜的稳定性大幅度降低。此外,Pd-Au复合膜金属层上的局部裂纹会降低对氢气的选择渗透性,这可能是因为缺少中间层,而中间层可用于补偿由于构成复合膜两种材料的热膨胀系数不同而引起的机械应力
[74 ]
。H2 S,CO和CH4 共存时对Pd-Au合金膜的耦合毒化作用机制及H2 S存在的条件下,温度和暴露时间对Pd-Au合金膜的H2 渗透特性的影响和毒化后膜渗透恢复重要现象的表征尚无详细报道。
图1 1 Pd92Au8膜暴露在φ(H2S)=54.8×10-6的H2S/H2中,不同温度下的中毒与恢复示意图
Fig.11 Poisoning and recovery of Pd92 Au8 membrane in aφ(H2 S)=54.8×10-6 H2 S/H2 mixture as a function of tem-perature
[72]
此外,有学者提出向钯复合膜表面涂覆一薄层Mo S2 ,可以优先吸附分解H2 S进而阻止H2 S与钯膜的直接接触,从而极大地增强钯膜对H2 S毒化的抑制作用
[35 ]
。
整体而言,与纯钯膜相比,钯基二元合金膜成本降低,其中Pd-Ag,Pd-Y合金膜透氢性能较好而抗杂质气体毒化性能较差,Pd-Pt,Pd-Cu和Pd-Au合金膜则具有相反的特性。因此,综合提高钯基二元合金膜的透氢性能和抗杂质气体毒化性能仍然是研究的重点。
3 钯基三元合金膜透氢及抗毒化研究
钯基二元合金膜只能单一提升纯钯膜的透氢性能或抗毒化性能,而三元合金膜则可以改善这一弊端。钯基三元合金膜主要分为三类:Pd-Ag-M系、Pd-Cu-M系和其他三元合金膜系,如Pd-Pt-M,Pd-Y-M等。其中,Pd-Ag二元合金膜因抗毒化性能较差,开发Pd-Ag基三元合金膜的目的是加入第三种耐中毒的合金元素,在增强Pd-Ag膜对杂质气体的耐受性的同时又保持优良透氢性能;而fcc结构的Pd-Cu合金膜虽具有较强的抗中毒性能,但氢渗透性较差,为了提高其透氢性能,研究者通过添加第三种合金元素合成Pd-Cu基三元合金膜。
3.1 Pd-Ag-M三元合金膜
Braun等
[75 ]
向高渗透性Pd-Ag二元膜中添加Au形成Pd-Ag-Au三元合金膜,通过防止形成厚的稳定硫化物而使与H2 S暴露相关的永久性H2 通量损失最小化。Peters等
[76 ]
对Pd-Ag-M(M=Au,Cu,Mo,Y)合金膜进行了系统研究,并分析了其在H2 S暴露下的抗中毒性能。研究表明,Pd75 Ag22 Au3 和Pd85 Ag11 Cu4 合金改善了Pd-Ag膜的耐硫性,Pd75 Ag22 Au3 表面没有检测到S的存在,还显示出更快的H2 通量恢复,如图12所示。Pd-Ag-Au合金膜具有比纯钯膜更高的初始H2 渗透率,且在H2 S暴露后的渗透性损失也比纯钯膜低
[77 ]
。
图1 2 在450℃下,将Pd77Ag23,Pd75Ag22Au3,Pd85Ag11Cu4,Pd76Ag21Mo3和Pd69Ag27Y4膜暴露于20×10-6H2S之前,之中和之后获得的绝对H2通量
Fig.12 Absolute H2 flux obtained before,during and after expo-sure of Pd77 Ag23 ,Pd75 Ag22 Au3 ,Pd85 Ag11 Cu4 ,Pd76 Ag21 Mo3 and Pd69 Ag27 Y4 membranes to 20×10-6 H2 S at 450℃
[76]
虽然Pd-Ag-Au合金膜抗H2 S毒化性能较好,但会出现合金元素Ag和Au在膜表面偏析的现象
[77 ,78 ]
。添加Au是提高Pd-Ag合金膜抗H2 S毒化和透氢性能最有效的方法之一,但成本相对较高,且存在合金元素偏析现象。
Peters等
[76 ]
通过X射线光电子能谱(XPS)分析显示,Pd76 Ag21 Mo3 和Pd69 Ag27 Y4 合金膜的S信号随着蚀刻时间的增加而减少,如图13所示,这是由于Pd合金膜中其他合金元素的偏析和Pd69 Ag27 Y4 合金的氧化导致,其中,Mo向膜主体的偏析会导致膜表面上的硫不稳定。
图1 3 不同Pd Ag基合金膜S的XPS深度分布图
Fig.13 XPS depth profile for sulphur obtained for various Pd Ag-based films
[76]
3.2 Pd-Cu-M三元合金膜
Nayebossadri等
[79 ]
研究了Pd-Cu-M(M=Zr,V,Ti,Ni,Y和Nb)三元合金膜在1000×10-6 H2 S气氛下氢气通量的变化。由图14可知,与Pd-Cu合金相比,Pd-Cu-Zr合金则表现出良好的抗毒化性能,氢通量最高,Pd-Cu-Ti、Pd-Cu-Nb和Pd-Cu-V次之,而Pd-Cu-Ni合金在H2 S气氛下稳定性较差,在暴露6 h后氢通量受到明显抑制。此外,理论计算研究发现Cr的添加可以提高Pd-Cu合金膜的结构稳定性和氢渗透率
[80 ]
。
Tarditi等
[81 ]
研究发现添加Au可以进一步提高Pd-Cu合金膜的抗H2 S毒化性能,在H2 S暴露后膜表面没有硫化物产生。Au可以提高氢的溶解度,但对膜的高温稳定性具有一定的抑制作用且随浓度变化,而Cu存在时可以减轻这种负面影响,因此,添加适量的Au可以提高fcc-Pd Cu合金膜的氢渗透率
[82 ]
。Pd-Cu-Au合金中氢的溶解度随晶格参数和钯含量的增加而增加,随微晶尺寸和向bcc相转变而降低
[83 ]
。
Liu等
[84 ]
利用DFT计算研究表明,添加Ag可以增加或降低Pd Cu Ag相的氢溶解度、扩散率和渗透率,并且Pd Cu Ag与Pd Cu的氢溶解度和渗透率可以彼此相近,这主要取决于Pd Cu Ag相的晶体结构和Ag取代的位置。Tosques等
[85 ]
研究表明,Ag取代Cu能够显著提高Pd-Cu-Ag三元合金膜氢的溶解度,进而提高氢渗透率。
图1 4 在450℃时Pd65.1Cu34.9和Pd-Cu-M(M=Y,Ti,Zr,V,Nb和Ni)合金的硫中毒(进料气体包含1000×10-6的H2S和H2)
Fig.14 Sulfur poisoning of Pd65.1 Cu34.9 and Pd-Cu-M(M=Y,Ti,Zr,V,Nb and Ni)alloys at 450℃(feed H2 gas contains 1000×10-6 of H2 S
[79]
)
然而,对于Pd-Cu-Ag三元合金,虽然加入少量Ag能够显著提高Pd-Cu合金的氢渗透率,但在中等温度退火条件下会出现两种合金元素的共偏析现象
[26 ]
,L?vvik等
[86 ]
也观察到Pd-Cu-Ag三元合金中Cu,Ag同时向晶界偏析的现象。与Pd70 Cu30 合金相比,铜含量为10%时,Pd-Cu-Ag三元合金氢渗透性可提高一倍,然而这种少量的铜添加对硫的抑制效果并不明显
[77 ]
。此外,与Pd81 Cu19 相比,Ag的添加还会降低膜的抗硫中毒性能
[87 ]
。整体而言,对于Pd-Cu-M三元合金,Au和Zr的添加可以进一步提高其抗中毒性能,Cr可以提高膜的结构稳定性,Ag的添加虽然可以大幅度增强透氢性能,但会出现偏析现象,甚至会降低膜的抗硫中毒性能。
与钯基二元合金膜相比,钯基三元合金膜改善了其只能单一提高抗毒化性能或渗透性能的弊端,在Pd-Ag二元合金中添加具有高抗毒化性能的合金元素可以显著增强Pd-Ag合金的抗中毒性能并能维持甚至增强其透氢性能,而向Pd-Cu二元合金中加入少量的高透氢性的合金元素即可明显提高其透氢性能。但钯基三元合金仍存在合金元素偏析、各组元成分比例的精确控制等问题,且三元合金较之二元合金合成工艺较复杂,成本升高。总之,综合考虑工艺、性能和成本,钯基二元和三元合金膜各有优劣,均应继续深入研究。
4 结语
钯膜对氢气具有优良的选择性和渗透性,广泛应用于氢气的分离提纯,但其在实际工业应用中仍面临各种挑战。膜的热稳定性、机械性能有待进一步提高,化学稳定性差、易被杂质气体毒化限制了钯膜的应用。钯膜合金化可以改善钯性能,其中添加Ag和Y可提高钯膜的透氢性能,但抗杂质气体毒化性能较差,且Pd-Y合金膜易被氧化从而导致氢渗透率降低;Pd-Pt合金膜的高温稳定性和抗毒化性能较好,透氢性能较差;添加Cu可大幅度改善钯膜的抗毒化性能并降低成本,Cu在膜表面偏析、H2 渗透滞后以及合金退火工艺不够完善等问题却不容忽视;Pd-Au合金膜能极大地提高钯膜的抗硫中毒性能,然而其成本较高且合金元素Au易于向膜表面偏析。部分钯基二元合金存在透氢性能差或抗杂质气体毒化效果不明显等缺点,为了改善这些问题,需要对钯基二元合金膜进行更深入研究,并且需要进一步发展钯基三元合金的研究。对于Pd-Ag-M三元合金而言,向Pd-Ag二元合金中添加具有高抗毒化性能的合金元素可以显著增强Pd-Ag合金的抗中毒性能,而向Pd-Cu二元合金中加入少量的高透氢性的合金元素即可明显提高其透氢性能,钯基三元合金仍存在合金元素偏析、各组元成分比例如何精确控制等问题。
在钯基膜的研究中,碳或硫污染造成的膜耐久性问题还有待进一步解决,特别是钯膜暴露于CO气氛中时,高温下形成的Pd C相对钯膜的影响机制以及通过何种方法消除这种影响尚不明确。此外,对于多元杂质气体H2 S,CO和CH4 等共存时对钯及钯合金膜的耦合毒化作用机制的研究,不同学者之间研究结果略有差异,且大多只停留在对现象和结果的阐释,因此亟需对混合气体毒化机制进行深入系统研究,并将毒化机制用于指导设计更高性能钯基氢分离纯化膜,以有效提高钯膜的氢气分离纯化效率和寿命。鉴于钯膜寿命是制约其应用的重要指标,而长期连续监测钯膜使用寿命消耗周期过长,在实验研究方面存在一定难度,因此后续可通过理论计算与实验相结合,探索一种用于预测钯及钯合金膜使用寿命的评价方法。
参考文献
[1] Peters T A,Robert W. Renewable energy resources,3rd edition[J]. Environmental Progress&Sustainable Energy,2016,35(3):617.
[2] Xie H, Sun Y, Wang H Y. Structural design and optimization of power battery pack based on a pure electric vehicle[J]. Journal of Plasticity Engineering, 2020, 27(12):88.(谢晖,孙延,王杭燕.基于某款纯电动汽车的动力电池包结构设计及优化[J].塑性工程学报,2020,27(12):88.)
[3] Acar C,Dincer I. Hydrogen energy[J]. Comprehensive Energy Systems,2018,1:568.
[4] Liu W B,Li L,Liu G C,Wang X D. Research progress on stability of perovskite solar cells[J]. Nonferrous Metals Science and Engineering,2017,8(2):31.(刘文兵,李亮,刘桂成,王新东.钙钛矿太阳能电池稳定性研究进展[J].有色金属科学与工程,2017,8(2):31.)
[5] Qu G H. Discussion on the development of hydrogen energy industry and hydrogen resources in China[J]. Petroleum&Petrochemical Today,2020,28(4):4.(瞿国华.我国氢能产业发展和氢资源探讨[J].当代石油石化,2020,28(4):4.)
[6] Sun H,Zhao F G,Feng D C,Ren H P,Zhang Y H. Activation and hydrogen absorption properties of Mg22 Y2 Ni10 Cu2 hydrogen storage alloy[J]. Chinese Journal of Rare Metals,2020,44(4):387.(孙昊,赵凤光,冯佃臣,任慧平,张羊换. Mg22 Y2 Ni10 Cu2 储氢合金活化和吸氢性能[J].稀有金属,2020,44(4):387.)
[7] Zhao D L,Han Z G,Zhai T T,Yuan Z M,Qi Y,Zhang Y H. Advances in activation property of hydrogen storage for TiFe-based alloy[J]. Chinese Journal of Rare Metals,2020,44(4):337.(赵栋梁,韩忠刚,翟亭亭,袁泽明,祁焱,张羊换.TiFe基合金储氢活化性能研究进展[J].稀有金属,2020,44(4):337.)
[8] John H,Oscar S,Maura C D,Lorenzo M G. Hydrogen storage in a rare-earth perovskite-type oxide La0.6 Sr0.4 Co0.2 Fe0.8 O3 for battery applications[J]. Rare Metals,2018,37(12):1003.
[9] Lewis F,The palladium-hydrogen system:structures near phase transition and critical points[J]. International Journal of Hydrogen Energy,1995,20:587.
[10] Feng W,Wang Q Y,Zhu X D,Kong Q Q,Wu J J,Tu P P. Influence of hydrogen sulfide and redox reactions on the surface properties and hydrogen permeability of Pd membranes[J]. Energies,2018,11(5):1127.
[11] Murmura M A,Sheintuch M. Permeance inhibition of Pd-based membranes by competitive adsorption of CO:membrane size effects and first principles predictions[J]. The Chemical Engineering Journal, 2018,347:301.
[12] Li H,Goldbach A,Li W,Xu H. On CH4 decomposition during separation from H2 mixtures with thin Pd membranes[J]. Journal of Membrane Science,2008,324(1):95.
[13] Conde J J,Maro?o M,Sánchez-Hervás J M. Pd-based membranes for hydrogen separation:review of alloying elements and their influence on membrane properties[J]. Separation&Purification Reviews, 2017, 46(2):152.
[14] Wang D,Flanagan T B. Thermodynamics of hydrogen solution in Pd-Y alloys[J]. Journal of Alloys and Compounds,2017,709:633.
[15] Peters T A,Stange M,Veenstra P,Nijmeijer A,Bredesen R. The performance of Pd-Ag alloy membrane films under exposure to trace amounts of H2 S[J]. Journal of Membrane Science,2016:105.
[16] Acha E,Van Delft Y C,Cambra J F,Arias P L. Thin PdCu membrane for hydrogen purification from in-situ produced methane reforming complex mixtures containing H2 S[J]. Chemical Engineering Science,2017,176:429.
[17] Dalla F A,NoelíSirini,Cornaglia L M,Tarditi A M. Hydrogen permeation and surface properties of PdAu and PdAgAu membranes in the presence of CO,CO2 and H2S[J]. Journal of Membrane Science, 2018,563:351.
[18] Coulter K E,Way J D,Gade S K,Chaudhari S O,Alptekin G J,DeVoss S N,Paglieri S,Pledger B. Sulfur tolerant PdAu and PdAuPt alloy hydrogen separation membranes[J]. Journal of Membrane Science,2012,405-406:11.
[19] Zhao M,Sloof W G,B?ttger A J. Modelling of surface segregation for palladium alloys in vacuum and gas environments[J]. International Journal of Hydrogen Energy,2018,43(4):2212.
[20] Lewis A E,Kershner D C,Paglieri S N,Slepicka M J,Way J D. Pd-Pt/YSZ composite membranes for hydrogen separation from synthetic water-gas shift streams[J].Journal of Membrane Science,2013,437:257.
[21] Abu E H H W,Paglieri S N,Morris C C,Harale A,Way J D. Identification of thermally stable Pd-alloy composite membranes for high temperature applications[J].Journal of Membrane Science,2014,466:151.
[22] Cabrera A L,Morales L,Erie,Hasen J. Structural changes induced by hydrogen absorption in palladium and palladium-ruthenium alloys[J]. Applied Physics Letters,1995,66(10):1216.
[23] Gade S K,Keeling M K,Davidson A P,Hatlevik O,Way J D. Palladium-ruthenium membranes for hydrogen separation fabricated by electroless co-deposition[J].International Journal of Hydrogen Energy,2009,34(15):6484.
[24] Knapton A G. Palladium alloys for hydrogen diffusion Membranes[J]. Platinum Metals Review,1977,21(2):44.
[25] Kamakoti P,Sholl D. Towards first principles-based identification of ternary alloys for hydrogen purification membranes[J]. Journal of Membrane Science,2006,279(1-2):94.
[26] Tarditi A M,Cornaglia L M. Novel PdAgCu ternary alloy as promising materials for hydrogen separation membranes:synthesis and characterization[J]. Surface Science,2011,605(1-2):62.
[27] Dolan M D. Non-Pd bcc alloy membranes for industrial hydrogen separation[J]. Journal of Membrane Science,2010,362(1-2):12.
[28] Nakatsuji H,Hada M. Interaction of a hydrogen molecule with palladium[J]. Journal of the American Chemical Society,1985,107(26):8264.
[29] Yun S,Oyama S T. Correlations in palladium membranes for hydrogen separation:a review[J]. Journal of Membrane Science,2011,375(1):28.
[30] Casey P,O’Brien,Gellman A J,Morreale B D,Miller J B. The hydrogen permeability of Pd4 S[J]. Journal of Membrane Science,2011,371:263.
[31] Boon J,Pieterse J,Berkel F V,Deft Y V,Annaland M V S. Hydrogen permeation through palladium membranes and inhibition by carbon monoxide,carbon dioxide,and steam[J]. Journal of Membrane Science,2015,496:344.
[32] Murmura M A,Sheintuch M. Permeance inhibition of Pd-based membranes by competitive adsorption of CO:membrane size effects and first principles predictions[J]. The Chemical Engineering Journal, 2018,347:301.
[33] Chen B,Xu T,Li H,Bao F,Yu J,Li X,Xu H. Highly sulfur-tolerant Pd composite membranes with a protective layer of MoS2 /γ-alumina[J]. Journal of Materials Chemistry A,2017,5:8892.
[34] Melendez J,Nooijer N D,Coenen K,Fernandet E,Viviente J L,Annaland M S,Arias P L,Pacheco Tanaka D A,Gallucci F. Effect of Au addition on hydrogen permeation and the resistance to H2 S on Pd-Ag alloy membranes[J]. Journal of Membrane Science,2017,542:329.
[35] O’Brien C P,Lee I C. CO poisoning and CO hydrogenation on the surface of Pd hydrogen separation membranes[J]. Journal of Physical Chemistry C,2017,121:16864.
[36] Li H,Goldbach A,Li W,Xu H. PdC formation in ultrathin Pd membranes during separation of H2 /CO mixtures[J]. Journal of Membrane Science, 2007, 299(1-2):130.
[37] Amandusson H,Ekedahl LG,Dannetun H. Hydrogen permeation through surface modified Pd and PdAg membranes[J]. Journal of Membrane Science,2001,193(1):35.
[38] Li A,Liang W,Huges R. The effect of carbon monoxide and steam on the hydrogen permeability of a Pd/stainless steel membrane[J]. Journal of Membrane Science,2000,165:135.
[39] Uemiya S,Matsuda T,Kikuchi E. Hydrogen permeable palladium-silver alloy membrane supported on porous ceramics[J]. Journal of Membrane Science,1991,56(3):315.
[40] Peters T A,Stange M,Bredesen R. On the high pressure performance of thin supported Pd-23%Ag membranes-evidence of ultrahigh hydrogen flux after air treatment[J]. Journal of Membrane Science, 2010,378:28.
[41] Nguyen T H,Mori S,Suzuki M. Hydrogen permeance and the effect of H2O and CO on the permeability of Pd0.75 Ag0.25 membranes under gas-driven permeation and plasma-driven permeation[J]. Chemical Engineering Journal,2009,155(1-2):55.
[42] Peters T A,Stange M,Veenstra P,Nijmeijer A,Bredesen R. The performance of Pd-Ag alloy membrane films under exposure to trace amounts of H2 S[J]. Journal of Membrane Science,2016,499:105.
[43] Lovvik O M,Opalka S M. Reversed surface segregation in palladium-silver alloys due to hydrogen adsorption[J]. Surface Science,2008,602(17):2840.
[44] Miguel C V,Mendes A,Tosti S,Madeira L M. Effect of CO and CO2 on H2permeation through finger-like Pd-Ag membrane[J]. International Journal of Hydrogen Energy,2012,37,12680.
[45] Alkali A,Abdullahi K. A comparison of the inhibiting effect of CO and CO2 to hydrogen permeation and n-value in Pd and Pd/Ag membranes prepared on alumina support[J]. Journal of Power and Energy Engineering,2019,7:1.
[46] Peters T A,Carvalho P A,Stange M,Bredesen R. Formation of hydrogen bubbles in Pd-Ag membranes during H2 permeation[J]. International Journal of Hydrogen Energy,2020,45:7488.
[47] Hughes D T,Harris I R. A comparative study of hydrogen permeabilities and solubilities in some palladium solid solution alloys[J]. Journal of the Less Common Metals,1978,61(2):9.
[48] Peng L,Rao Y,Luo L,Chen C. The poisoning of Pd-Y alloy membranes by carbon monoxide[J]. Journal of Alloys and Compounds,2009,486(1),74.
[49] Fort D,Farr J P G,Harris I R. A comparison of palladium-silver and palladium-yttrium alloys as hydrogen separation membranes[J]. Journal of the Less-Common Metals,1975,39(2):293.
[50] Howard B H,Morreale B D. Effect of H2 S on performance of Pd-Pt alloy membranes[J]. Energy Material,2008,3:177.
[51] Abu E H H W,Paglieri S N,Morris C C,Harale A,Way J D. Identification of thermally stable Pd-alloy composite membranes for high temperature applications[J].Journal of Membrane Science,2014,466:151.
[52] Kamakoti P,Morreale B D,Ciocco M V. Prediction of hydrogen flux through sulfur-tolerant binary alloy membranes[J]. Science,2005,307(5709):569.
[53] Liu L C,Wang J W,He Y H,Gong H R. Solubility,diffusivity,and permeability of hydrogen at PdCu phases[J]. Journal of Membrane Science,2017,542:24.
[54] Nandha K,Debabrata C,Prasenjit G,Chiranjib M. Microscopic insights of hydrogen permeation through a model Pd-Cu membrane from first-principles investigations[J]. Journal of Physical Chemistry C,2018,122(24):12920.
[55] Al-Mufachi N A,Nayebossadri S,Speight J D,Bujalski W,Steinberger-Wilckens R,Book D. Effects of thin film Pd deposition on the hydrogen permeability of Pd60 Cu40 (wt%)alloy membranes[J]. Journal of Membrane Science,2014,493:580.
[56] Morreale B D,Ciocco M V,Howard B H,Killmeyer R P,Cugini A V,Enick R M. Effect of hydrogen-sulfide on the hydrogen permeance of palladium-copper alloys at elevated temperatures[J]. Journal of Membrane Science,2004,241(2):219.
[57] Zhao C,Goldbach A,Xu H. Low-temperature stability of body-centered cubic PdCu membranes[J]. Journal of Membrane Science,2017,542:60.
[58] Kamakoti P,Morreale B D,Ciocco M V,Howard B H,Killmeyer R P,Cugini A V,Sholl D S. Prediction of hydrogen flux through sulfur-tolerant binary alloy membranes[J]. Science,2005,307(5709):569.
[59] Goldbach A,Yuan L,Xu H. Impact of the fcc/bcc phase transition on the homogeneity and behavior of PdCu membranes[J]. Separation&Purification Technology,2010,73(1):65.
[60] Acha E,Van Delft Y C,Cambra J F,Arias P L. Thin PdCu membrane for hydrogen purification from in-situ produced methane reforming complex mixtures containing H2 S[J]. Chemical Engineering Science,2017,176:429.
[61] Casey P,O’Brien,Lee I C. The interaction of CO with PdCu hydrogen separation membranes:an operando infrared spectroscopy study[J]. Catalysis Today,2019,336:216.
[62] Zhang X,Xiong G,Yang W. Hydrogen separation from the mixtures in a thin Pd-Cu alloy membrane reactor[J]. Studies in Surface Science&Catalysis,2007,167(7):219.
[63] Zhang K,Way J D. Palladium-copper membranes for hydrogen separation[J]. Separation and Purification Technology,2017,186:39.
[64] Miller J B,Matranga C,Gellman A J. Surface segregation in a polycrystalline Pd70 Cu30 alloy hydrogen purification membrane[J]. Surface Science, 2008, 602(1):375.
[65] Yuan L,Goldbach A,Xu H,Real-time monitoring of metal deposition and segregation phenomena during preparation of Pd-Cu membranes[J]. Journal of Membrane Science,2008,322:39.
[66] Gade S K,Payzant E A,Park H J,Thoen P M,Way J D. The effects of fabrication and annealing on the structure and hydrogen permeation of Pd-Au binary alloy membranes[J]. Journal of Membrane Science,2009,340:227.
[67] Zhang K.Recent Progress on Sulfur-Resistant Palladium Membranes. Current Trends and Future Developments on(Bio-)Membranes[M]. Amsterdam:Elsevier,2020. 123.
[68] Flanagan T B,Wang D. Hydrogen permeation through fcc Pd-Au alloy membranes[J]. Journal of Physical Chemistry C,2011,115(23):11618.
[69] Iulianelli A,Jansen J C,Esposito E,Longo M,Dalena F,Basile A. Hydrogen permeation and separation characteristics of a thin Pd-Au/Al2 O3 membrane:the effect of the intermediate layer absence[J]. Catalysis Today,2019,330:32.
[70] Al-Mufachi N A,Rees N V,Steinberger-Wilkens R. Hydrogen selective membranes:a review of palladiumbased dense metal membranes[J]. Renewable and Sustainable Energy Reviews,2015,47:540.
[71] Bernardo G,Araújo T,da Silva Lopes T,Sousa J,Mendes A. Recent advances in membrane technologies for hydrogen purification[J]. International Journal of Hydrogen Energy,2020,45(12):7313.
[72] Chen C H,Ma Y H. The effect of H2 S on the performance of Pd and Pd/Au composite membrane[J]. Journal of Membrane Science,2010,362(1-2):535.
[73] Lundin S T B,Patki N S,Zhang Z Y,Fuerst T F,Wolden C A,Way J D. PdAu/YSZ composite hydrogen separation membranes with enhanced stability in the presence of CO[J]. Journal of Membrane Science,2020,611:118371.
[74] Iulianelli A,Huang Y,Basile A. A thin supported PdAu based membrane for hydrogen generation and purification:a case study[J]. 2018,5(4):313.
[75] Braun F,Tarditi A M,Miller J B,Cornaglia L M. Pdbased binary and ternary alloy membranes:morphological and perm-selective characterization in the presence of H2S[J]. Journal of Membrane Science, 2014,450:299.
[76] Peters T A,Kaleta T,Stange M,Bredesen R. Development of ternary Pd-Ag-TM alloy membranes with improved sulphur tolerance[J]. Journal of Membrane Science,2013,429:448.
[77] Braun F,Miller J B,Gellman A J,Tarditi A M,Fleutot B,Kondratyuk P,Cornaglia L M. PdAgAu alloy with high resistance to corrosion by H2 S[J]. International Journal of Hydrogen Energy,2012,37(23):18547.
[78] Lewis A E,Zhao H,Syed H,Wolden C A,Way J D.PdAu and PdAuAg composite membranes for hydrogen separation from synthetic water-gas shift streams containing hydrogen sulfide[J]. Journal of Membrane Science,2014,465:167.
[79] Nayebossadri S,Speight J D,Book D. Pd-Cu-M(M=Y,Ti,Zr,V,Nb,and Ni)alloys for hydrogen separation membrane[J]. ACS Applied Materials&Interfaces,2017,9(3):2650.
[80] Hu Y T,Chen L,Gong H. Structural stability,phase transition,and hydrogen diffusion of PdCu phases with additions of Nb and Cr[J]. International Journal of Hydrogen Energy,2017,42(5):3051.
[81] Tarditi A M,Imhoff C,Braun F,Miller J B,Gellman A J,Cornaglia L. PdCuAu ternary alloy membranes:hydrogen permeation properties in the presence of H2 S[J].Journal of Membrane Science,2015,479:246.
[82] Jia H,Wu P,Zeng G F,Salas-Colera E,Serrano A,Castro G R,Xu H Y,Sun C L,Goldbach A. High-temperature stability of Pd alloy membranes containing Cu and Au[J]. Journal of Membrane Science, 2017,544:151.
[83] Honrado Guerreiro B,Martin M H,RouéL,Guay D.Hydrogen solubility of magnetron Co-sputtered fcc and bcc PdCuAu thin films[J]. Journal of Physical Chemistry C,2016,120(10):5297.
[84] Liu L C,Wang J W,Qian J,He Y H,Gong H R,Liang C P. Fundamental effects of Ag alloying on hydrogen behaviors in PdCu[J]. Journal of Membrane Science,2018,550:230.
[85] Tosques J,Honrado Guerreiro B,Martin M H,RouéL,Guay D. Hydrogen solubility of bcc PdCu and PdCuAg alloys prepared by mechanical alloying[J]. Journal of Alloys&Compounds,2017,698:725.
[86] L?vvik O M,Zhao D,Li Y,Bredesen R,Peters T.Grain boundary segregation in Pd-Cu-Ag alloys for high permeability hydrogen separation membranes[J]. Membranes,2018,8(3):1.
[87] Zhao L F,Goldbach A,Xu H Y. Tailoring palladium alloy membranes for hydrogen separation from sulfur contaminated gas streams[J]. Journal of Membrane Science,2016,507:55.