基于改进多目标优化算法的分布式数据中心负载调度
来源期刊:控制与决策2021年第1期
论文作者:胡成玉 余果 颜雪松 龚文引 蔡君怡
关键词:数据中心;负载调度;多目标优化;拥挤距离;自适应变异;
摘 要:在数据中心的运营中运营商需要考虑如何在利润最大化的同时降低碳排放和提升服务质量,这些目标之间的平衡是一个巨大挑战.针对该问题,建立分布式数据中心负载调度的多目标优化模型,提出一种改进拥挤距离和自适应交叉变异的非支配排序遗传算法(ICDA-NSGA-II).在NSGA-II算法的基础上,通过对拥挤距离的改进能够提高算法的开采和勘探能力,引入正态分布交叉(NDX)算子和自适应变异算子增强种群的多样性,从而保证算法能快速、准确地得到Pareto解集.为了显示改进算法的有效性,对基准测试函数进行求解,仿真结果表明,改进算法相比于典型的NSGA-II和MOEA/D具有更快的收敛速度和精度,在分布式数据中心负载调度优化中,能够快速有效地给出满足利润、碳排放和服务质量等目标的Pareto最优解.
胡成玉,余果,颜雪松,龚文引,蔡君怡
中国地质大学(武汉)计算机学院
摘 要:在数据中心的运营中运营商需要考虑如何在利润最大化的同时降低碳排放和提升服务质量,这些目标之间的平衡是一个巨大挑战.针对该问题,建立分布式数据中心负载调度的多目标优化模型,提出一种改进拥挤距离和自适应交叉变异的非支配排序遗传算法(ICDA-NSGA-II).在NSGA-II算法的基础上,通过对拥挤距离的改进能够提高算法的开采和勘探能力,引入正态分布交叉(NDX)算子和自适应变异算子增强种群的多样性,从而保证算法能快速、准确地得到Pareto解集.为了显示改进算法的有效性,对基准测试函数进行求解,仿真结果表明,改进算法相比于典型的NSGA-II和MOEA/D具有更快的收敛速度和精度,在分布式数据中心负载调度优化中,能够快速有效地给出满足利润、碳排放和服务质量等目标的Pareto最优解.
关键词:数据中心;负载调度;多目标优化;拥挤距离;自适应变异;