基于RBF神经网络的露天矿爆破效果预测研究
来源期刊:中国矿业2020年第1期
论文作者:柳小波 袁鹏喆 张兴帆
文章页码:81 - 84
关键词:RBF神经网络;爆破效果;随机森林算法;模糊评价;
摘 要:露天矿爆破是一个受诸多因素共同影响的系统工程,是露天开采的重要环节之一,其爆破效果的优劣直接影响后续工序的完成。提高爆破技术水平和爆破质量,对矿山安全和生产具有重要的意义。本文通过随机森林选择影响爆破效果的主要参数,结合模糊评价确定爆破综合效果,建立了RBF神经网络爆破效果预测模型。将该模型应用于矿山爆破效果预测中,并将爆破现场实测的11组数据作为模型训练样本,另外5组现场数据作为预测样本进行测试,通过与BP神经网络比较,发现RBF神经网络的预测性能更为优越,可广泛应用于现场实践中。
柳小波,袁鹏喆,张兴帆
东北大学智慧矿山研究中心
摘 要:露天矿爆破是一个受诸多因素共同影响的系统工程,是露天开采的重要环节之一,其爆破效果的优劣直接影响后续工序的完成。提高爆破技术水平和爆破质量,对矿山安全和生产具有重要的意义。本文通过随机森林选择影响爆破效果的主要参数,结合模糊评价确定爆破综合效果,建立了RBF神经网络爆破效果预测模型。将该模型应用于矿山爆破效果预测中,并将爆破现场实测的11组数据作为模型训练样本,另外5组现场数据作为预测样本进行测试,通过与BP神经网络比较,发现RBF神经网络的预测性能更为优越,可广泛应用于现场实践中。
关键词:RBF神经网络;爆破效果;随机森林算法;模糊评价;