新型装配式钢-UHPC防船撞装置关键参数及其性能研究

来源期刊:中南大学学报(自然科学版)2021年第2期

论文作者:周凌宇 李华永 王强 林全富 杨斌财 张强 何铁名

文章页码:519 - 529

关键词:船桥碰撞;装配式;钢-混凝土;撞击力;缓冲吸能

Key words:bridge collision; fabricated; steel concrete; impact force; buffering energy absorption

摘    要:将18个内衬框架式耗能元件的独立浮箱整体装配式连接作为防船撞耗能装置,利用LS-DYNA对船桥碰撞系统进行精细化建模,通过对防船撞装置内部耗能元件材料种类、浮箱壁厚、浮箱配筋率等关键参数进行优化分析,得到不同参数下桥墩撞击力、船舶变形能和桥墩能量等变化规律。研究结果表明:搭配低碳钢耗能元件时装置的防撞性能比高强铝合金和UHPC复合材料的防撞性能优;浮箱壁厚为120 mm时装置的防撞性能比壁厚为90 mm和150 mm时防撞性能优;当浮箱配筋率ρ为5%时装置的防撞性能优于ρ为4%,6%和7%时的防撞性能;基于计算结果,综合得到最优参数的钢-UHPC防船撞装置,在此最优参数及速度分别为1,3和5 m/s时,与无保护工况相比,船舶变形能分别减少89.6%,64.0%和51.3%,最大船桥碰撞力分别降低15.2%,36.4%和41.8%,能够有效保护船舶和桥墩。

Abstract: The integral assembly connection of the independent floating tank with 18 inner lining frame type energy dissipating elements was taken as the energy dissipating device against ship collision. LS-DYNA was used to establish the refined finite element model of ship bridge collision system. Through the performance optimization analysis of the key parameters such as the material type of energy dissipation elements, the wall thickness of the pontoon, the reinforcement ratio of the pontoon and so on, the change rules of the impact force of the pier, the deformation energy of the ship and the energy of the pier with different parameters were obtained. The results show that the anti-collision performance is better than that of high-strength aluminum alloy and UHPC composite when using low-carbon steel energy dissipation components. The anti-collision performanceof the device with 120 mm wall thickness is better than that of the device with 150 mm and 90 mm wall thickness, and the anti-collision performance of the device with 5% reinforcement ratio is better than that of the device with 4%, 6% and 7% reinforcement ratio. Based on the calculation results, the optimal parameters of steel UHPC ship collision prevention device are obtained. When the speed is 1, 3 and 5 m/s, the ship deformation energy is reduced by 89.6%, 64.0% and 51.3% respectively, and the maximum collision force of ship bridge is reduced by 15.2%, 36.4% and 41.8% respectively, which can effectively protect the ship and pier.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号