简介概要

Impact of permafrost degradation on embankment deformation of Qinghai-Tibet Highway in permafrost regions

来源期刊:中南大学学报(英文版)2015年第3期

论文作者:PENG Hui(彭惠) MA Wei(马巍) MU Yan-hu(穆彦虎) JIN Long(金龙)

文章页码:1079 - 1086

Key words:qinghai-tibet highway (QTH); permafrost degradation; embankment deformation; thawing settlement

Abstract: Based on long-term monitoring data, the relationships between permafrost degradation and embankment deformation are analyzed along the Qinghai-Tibet Highway (QTH). Due to heat absorbing effect of asphalt pavement and climate warming, permafrost beneath asphalt pavement experienced significant warming and degradation. During the monitoring period, warming amplitude of the soil at depth of 5 m under asphalt ranged from 0.21 °C at the XD1 site to 0.5 °C at the KL1 site. And at depth of 10 m, the increase amplitude of ground temperature ranged from 0.47 °C at the NA1 site to 0.07 °C at the XD1 site. Along with ground temperature increase, permafrost table beneath asphalt pavement decline considerably. Amplitude of permafrost table decline varied from 0.53 m at the KL1 site to 3.51 m at the NA1 site, with mean amplitude of 1.65 m for 8 monitoring sites during the monitoring period. Due to permafrost warming and degradation, the embankment deformation all performed as settlement at these sites. At present, those settlements still develop quickly and are expected to continue to increase in the future. The embankment deformations can be divided into homogeneous deformation and inhomogeneous deformation. Embankment longitudinal inhomogeneous deformation causes the wave deformations and has adverse effects on driving comfort and safety, while lateral inhomogeneous deformation causes longitudinal cracks and has an adverse effect on stability. Corresponding with permafrost degradation processes, embankment settlement can be divided into four stages. For QTH, embankment settlement is mainly comprised of thawing consolidation of ice-rich permafrost and creep of warming permafrost beneath permafrost table.

详情信息展示

Impact of permafrost degradation on embankment deformation of Qinghai-Tibet Highway in permafrost regions

PENG Hui(彭惠)1, 2, 3, MA Wei(马巍)1, MU Yan-hu(穆彦虎)1, JIN Long(金龙)2

(1. State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and
Engineering Research Institute, Chinese Academy of Science, Lanzhou 730000, China;
2. Key Laboratory of Highway Construction & Technology in Permafrost Regions, Ministry of Transport,
CCCC First Highway Consultants Co., Ltd., Xi’an 710065, China;
3. University of Chinese Academy of Science, Beijing 100049, China)

Abstract:Based on long-term monitoring data, the relationships between permafrost degradation and embankment deformation are analyzed along the Qinghai-Tibet Highway (QTH). Due to heat absorbing effect of asphalt pavement and climate warming, permafrost beneath asphalt pavement experienced significant warming and degradation. During the monitoring period, warming amplitude of the soil at depth of 5 m under asphalt ranged from 0.21 °C at the XD1 site to 0.5 °C at the KL1 site. And at depth of 10 m, the increase amplitude of ground temperature ranged from 0.47 °C at the NA1 site to 0.07 °C at the XD1 site. Along with ground temperature increase, permafrost table beneath asphalt pavement decline considerably. Amplitude of permafrost table decline varied from 0.53 m at the KL1 site to 3.51 m at the NA1 site, with mean amplitude of 1.65 m for 8 monitoring sites during the monitoring period. Due to permafrost warming and degradation, the embankment deformation all performed as settlement at these sites. At present, those settlements still develop quickly and are expected to continue to increase in the future. The embankment deformations can be divided into homogeneous deformation and inhomogeneous deformation. Embankment longitudinal inhomogeneous deformation causes the wave deformations and has adverse effects on driving comfort and safety, while lateral inhomogeneous deformation causes longitudinal cracks and has an adverse effect on stability. Corresponding with permafrost degradation processes, embankment settlement can be divided into four stages. For QTH, embankment settlement is mainly comprised of thawing consolidation of ice-rich permafrost and creep of warming permafrost beneath permafrost table.

Key words:qinghai-tibet highway (QTH); permafrost degradation; embankment deformation; thawing settlement

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号