简介概要

Microstructure evolution and interface structure of Al-40 wt% Si composites produced by high-energy ball milling

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2019年第4期

论文作者:Yuanyuan Chen Zhangping Hu Yifei Xu Jiangyong Wang Peter Schützendübe Yuan Huang Yongchang Liu Zumin Wang

文章页码:512 - 519

摘    要:High silicon content Al-Si composites with a composition of Al-40 wt% Si were fabricated via a highenergy ball milling method. The microstructure evolution of Al-40 wt% Si milled powders and sintered composites has been thoroughly studied by scanning electron microscopy, X-ray diffraction, energydispersive spectrometry and high-resolution transmission electron microscopy. The mechanism of ball milling Al-40 wt% Si powders has been disclosed in detail: fracture mechanism dominating in the early stages, followed by the agglomeration mechanism, finally reaching the balance between the fragments and the agglomerates. It has been found that the average particle sizes of mixed Al-Si powders can be refined to the nanoscale, and the crystallite sizes of Al and Si have been reduced to 10nm and 62nm upon milling for 2h–50h, respectively. The finally formed Al-Si interfaces after ball milling for 50h are wellcohesive. A dense and homogenous Al-40 wt% Si composite have been achieved by solid-state sintering at550?C. The results thus provide an effective support for producing bulk nanostructured Al-Si composites.

详情信息展示

Microstructure evolution and interface structure of Al-40 wt% Si composites produced by high-energy ball milling

Yuanyuan Chen1,Zhangping Hu1,Yifei Xu1,Jiangyong Wang2,Peter Schützendübe3,Yuan Huang1,Yongchang Liu1,Zumin Wang1

1. School of Materials Science and Engineering,Tianjin University2. Department of Physics,Shantou University3. Max Planck Institute for Intelligent Systems

摘 要:High silicon content Al-Si composites with a composition of Al-40 wt% Si were fabricated via a highenergy ball milling method. The microstructure evolution of Al-40 wt% Si milled powders and sintered composites has been thoroughly studied by scanning electron microscopy, X-ray diffraction, energydispersive spectrometry and high-resolution transmission electron microscopy. The mechanism of ball milling Al-40 wt% Si powders has been disclosed in detail: fracture mechanism dominating in the early stages, followed by the agglomeration mechanism, finally reaching the balance between the fragments and the agglomerates. It has been found that the average particle sizes of mixed Al-Si powders can be refined to the nanoscale, and the crystallite sizes of Al and Si have been reduced to 10nm and 62nm upon milling for 2h–50h, respectively. The finally formed Al-Si interfaces after ball milling for 50h are wellcohesive. A dense and homogenous Al-40 wt% Si composite have been achieved by solid-state sintering at550?C. The results thus provide an effective support for producing bulk nanostructured Al-Si composites.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号