Parameters of static response of carbon fiber reinforced polymer (CFRP) suspension cables
来源期刊:中南大学学报(英文版)2015年第8期
论文作者:WANG Li-bin WU Yong Mohammad Noori
文章页码:3123 - 3132
Key words:suspension bridge; carbon fiber reinforced polymer (CFRP) main cable; steel suspension cable; static response
Abstract: The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer (CFRP). First, a dimensionless equilibrium equation and the corresponding compatibility equation are established to develop the cable force equation and cable displacement governing equation for suspension cables, respectively. Subsequently, the inextensible cable case is introduced. The formula of the Irvine parameter is considered and its physical interpretation as well as its relationship with the chord gravity stiffness is presented. The influences on the increment of cable force and displacement by λ2 and load ratio p′ are analyzed, respectively. Based on these assumptions and the analytical formulations, a 2000 m span suspension cable is utilized as an example to verify the proposed formulation and the responses of the relative increment of cable force and cable displacement under symmetrical and asymmetrical loads are studied and presented. In each case, the deflections resulting from elastic elongation or solely due to geometrical displacement are analyzed for the lower elastic modulus CFRP. Finally, in comparison with steel cables, the influences on the cable force equation and the governing displacement equation by span and rise span ratio are analyzed. Moreover, the influences on the static performance of suspension bridge by span and sag ratios are also analyzed. The substantive characteristics of the static performance of super span CFRP suspension bridges are clarified and the superiority and the characteristics of CFRP cable structure are demonstrated analytically.
WANG Li-bin(王立彬)1, WU Yong(吴勇)1, Mohammad Noori2, 3
(1. School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China;
2. Mechanical Engineering Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA;
3. International Institute for Urban Systems Engineering, Southeast University, Nanjing 210037, China)
Abstract:The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer (CFRP). First, a dimensionless equilibrium equation and the corresponding compatibility equation are established to develop the cable force equation and cable displacement governing equation for suspension cables, respectively. Subsequently, the inextensible cable case is introduced. The formula of the Irvine parameter is considered and its physical interpretation as well as its relationship with the chord gravity stiffness is presented. The influences on the increment of cable force and displacement by λ2 and load ratio p′ are analyzed, respectively. Based on these assumptions and the analytical formulations, a 2000 m span suspension cable is utilized as an example to verify the proposed formulation and the responses of the relative increment of cable force and cable displacement under symmetrical and asymmetrical loads are studied and presented. In each case, the deflections resulting from elastic elongation or solely due to geometrical displacement are analyzed for the lower elastic modulus CFRP. Finally, in comparison with steel cables, the influences on the cable force equation and the governing displacement equation by span and rise span ratio are analyzed. Moreover, the influences on the static performance of suspension bridge by span and sag ratios are also analyzed. The substantive characteristics of the static performance of super span CFRP suspension bridges are clarified and the superiority and the characteristics of CFRP cable structure are demonstrated analytically.
Key words:suspension bridge; carbon fiber reinforced polymer (CFRP) main cable; steel suspension cable; static response