基于新冗余度的特征选择方法
来源期刊:东北大学学报(自然科学版)2020年第11期
论文作者:李占山 吕艾娜
文章页码:1550 - 1556
关键词:特征选择;互信息;多目标进化算法;l1正则化项;冗余度;
摘 要:现有过滤式特征选择模型采用贪心策略结合互信息评价特征子集,容易陷入局部最优陷阱.考虑标签信息对冗余度的影响,利用一种改进的MIFS-U方法在给定标签的条件下衡量冗余度,采用基于分解的多目标优化框架结合引入多项式突变的差分进化算子进行全局搜索,避免搜索陷入局部最优.引入l1正则化项来保证特征子集的稀疏性,并提出了新的特征选择算法MOEA/D-DEFS.实验阶段使用knn-5分类器来验证学习效果,并在多组来自不同领域的数据集上进行测试.结果表明,将特征选择视为多目标问题采用全局搜索策略搜索可以在特征子集维度和分类准确性方面提供更好的性能.
李占山,吕艾娜
吉林大学计算机科学与技术学院
摘 要:现有过滤式特征选择模型采用贪心策略结合互信息评价特征子集,容易陷入局部最优陷阱.考虑标签信息对冗余度的影响,利用一种改进的MIFS-U方法在给定标签的条件下衡量冗余度,采用基于分解的多目标优化框架结合引入多项式突变的差分进化算子进行全局搜索,避免搜索陷入局部最优.引入l1正则化项来保证特征子集的稀疏性,并提出了新的特征选择算法MOEA/D-DEFS.实验阶段使用knn-5分类器来验证学习效果,并在多组来自不同领域的数据集上进行测试.结果表明,将特征选择视为多目标问题采用全局搜索策略搜索可以在特征子集维度和分类准确性方面提供更好的性能.
关键词:特征选择;互信息;多目标进化算法;l1正则化项;冗余度;