简介概要

高斯混合粒子PHD滤波被动测角多目标跟踪

来源期刊:控制与决策2011年第3期

论文作者:张俊根 姬红兵

文章页码:413 - 417

关键词:多目标跟踪;随机集;概率假设密度;被动测角;拟蒙特卡罗积分;

摘    要:为解决目标数未知或随时间变化的多目标跟踪问题,通常将多目标状态和观测数据表示成随机集形式,并通过递推计算目标状态联合分布的概率假设密度(PHD)来完成.然而,对于被动测角的非线性跟踪问题,PHD无法获得闭合解,为此提出一种新的高斯混合粒子PHD算法.该算法利用高斯混合近似PHD,以避免用聚类确定目标状态,并采用拟蒙特卡罗(QMC)积分方法计算目标状态的预测和更新分布.仿真结果验证了所提出算法的有效性.

详情信息展示

高斯混合粒子PHD滤波被动测角多目标跟踪

张俊根,姬红兵

西安电子科技大学电子工程学院

摘 要:为解决目标数未知或随时间变化的多目标跟踪问题,通常将多目标状态和观测数据表示成随机集形式,并通过递推计算目标状态联合分布的概率假设密度(PHD)来完成.然而,对于被动测角的非线性跟踪问题,PHD无法获得闭合解,为此提出一种新的高斯混合粒子PHD算法.该算法利用高斯混合近似PHD,以避免用聚类确定目标状态,并采用拟蒙特卡罗(QMC)积分方法计算目标状态的预测和更新分布.仿真结果验证了所提出算法的有效性.

关键词:多目标跟踪;随机集;概率假设密度;被动测角;拟蒙特卡罗积分;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号