简介概要

Effect of Boron Content on the Microstructure and Magnetic Properties of Non-oriented Electrical Steels

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2015年第3期

论文作者:万勇 CHEN Weiqing

文章页码:574 - 579

摘    要:The effects of boron content in the range of 0-0.0082 wt%, on the inclusion type, microstructure, texture and magnetic properties of non-oriented electrical steels have been studied. After fi nal annealing, the addition of excess boron(w(Bt)>0.004 1 wt%) led to the formation of Fe2 B particles. As boron content increased, grain size increased and reached a maximum in steel with 0.004 1 wt% boron. Furthermore, steel containing 0.004 1 wt% boron had the strongest {100} fi ber texture, Goss texture and the weakest {111} fi ber texture among the fi ve tested steels. Flux density fi rstly rapidly increased and then suddenly decreased with increasing boron content and reached a maximum in steel with 0.004 1 wt% boron. Conversely, core loss fi rst sharply decreased and then abruptly increased with the increase of boron content and reached a minimum in steel containing 0.004 1 wt% boron. Steel containing 0.004 1 wt% boron obtained the best magnetic properties, predominantly through the development of optimum grain size and favorable texture.

详情信息展示

Effect of Boron Content on the Microstructure and Magnetic Properties of Non-oriented Electrical Steels

万勇1,2,CHEN Weiqing1

1. State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing2. School of Metallurgical Engineering, Anhui University of Technology

摘 要:The effects of boron content in the range of 0-0.0082 wt%, on the inclusion type, microstructure, texture and magnetic properties of non-oriented electrical steels have been studied. After fi nal annealing, the addition of excess boron(w(Bt)>0.004 1 wt%) led to the formation of Fe2 B particles. As boron content increased, grain size increased and reached a maximum in steel with 0.004 1 wt% boron. Furthermore, steel containing 0.004 1 wt% boron had the strongest {100} fi ber texture, Goss texture and the weakest {111} fi ber texture among the fi ve tested steels. Flux density fi rstly rapidly increased and then suddenly decreased with increasing boron content and reached a maximum in steel with 0.004 1 wt% boron. Conversely, core loss fi rst sharply decreased and then abruptly increased with the increase of boron content and reached a minimum in steel containing 0.004 1 wt% boron. Steel containing 0.004 1 wt% boron obtained the best magnetic properties, predominantly through the development of optimum grain size and favorable texture.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号