简介概要

Structural, morphological, Raman, optical, magnetic, and antibacterial characteristics of CeO2 nanostructures

来源期刊:International Journal of Minerals Metallurgy and Materials2016年第1期

论文作者:Noor Badshah

文章页码:102 - 108

摘    要:In this study, CeO2 nanostructures were synthesized by a soft chemical method. A hydrothermal treatment was observed to lead to an interesting morphological transformation of the nanoparticles into homogeneous microspheres composed of nanosheets with an average thickness of 40 nm. Structural analysis revealed the formation of a single-phase cubic fluorite structure of CeO2 for both samples. A Raman spectroscopic study confirmed the XRD results and furthermore indicated the presence of a large number of oxygen vacancies in the nanosheets. These oxygen vacancies led to room-temperature ferromagnetism(RTFM) of the CeO2 nanosheets with enhanced magnetic characteristics. Amazingly, the nanosheets exhibited substantially greater antibacterial activity than the nanoparticles. This greater antibacterial activity was attributed to greater exposure of high-surface-energy polar surfaces and to the presence of oxygen vacancies.

详情信息展示

Structural, morphological, Raman, optical, magnetic, and antibacterial characteristics of CeO2 nanostructures

Noor Badshah2

2. Department of Basic Science, University of Engineering and Technology

摘 要:In this study, CeO2 nanostructures were synthesized by a soft chemical method. A hydrothermal treatment was observed to lead to an interesting morphological transformation of the nanoparticles into homogeneous microspheres composed of nanosheets with an average thickness of 40 nm. Structural analysis revealed the formation of a single-phase cubic fluorite structure of CeO2 for both samples. A Raman spectroscopic study confirmed the XRD results and furthermore indicated the presence of a large number of oxygen vacancies in the nanosheets. These oxygen vacancies led to room-temperature ferromagnetism(RTFM) of the CeO2 nanosheets with enhanced magnetic characteristics. Amazingly, the nanosheets exhibited substantially greater antibacterial activity than the nanoparticles. This greater antibacterial activity was attributed to greater exposure of high-surface-energy polar surfaces and to the presence of oxygen vacancies.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号