简介概要

Existence patterns of Dy in β-NiAl from first-principles calculations

来源期刊:Rare Metals2016年第4期

论文作者:Tian Zhang Hong-Bo Guo Sheng-Kai Gong Hui-Bin Xu

文章页码:356 - 360

摘    要:Intermetallic compound β-NiAl is a promising material in high temperature applications due to its high melting temperature,high strength,low density,and good oxidation resistance.However,its application remains limited because of its relatively poor cyclic oxidation resistance.Addition of reactive element(RE)Dy can improve the cyclic oxidation of NiAl alloys significantly.However,the mechanism of Dy addition is not clear.Even the existence pattern of Dy in NiAl is unspecified.Therefore,in the present study,the impurity formation energies of Dy in stoichiometric NiAl,Ni-rich,and Al-rich NiAl for the substitution cases were studied by first-principles density functional theory.The results show that Dy could hardly substitute for either Ni or Al atoms in NiAl.However,calculations for dissolution energies show that Dy could be easily dissolved in Al vacancies in all three types of NiAl,which provides a new existence pattern of Dy in NiAl beyond experimental detection.

详情信息展示

Existence patterns of Dy in β-NiAl from first-principles calculations

摘要:Intermetallic compound β-NiAl is a promising material in high temperature applications due to its high melting temperature,high strength,low density,and good oxidation resistance.However,its application remains limited because of its relatively poor cyclic oxidation resistance.Addition of reactive element(RE)Dy can improve the cyclic oxidation of NiAl alloys significantly.However,the mechanism of Dy addition is not clear.Even the existence pattern of Dy in NiAl is unspecified.Therefore,in the present study,the impurity formation energies of Dy in stoichiometric NiAl,Ni-rich,and Al-rich NiAl for the substitution cases were studied by first-principles density functional theory.The results show that Dy could hardly substitute for either Ni or Al atoms in NiAl.However,calculations for dissolution energies show that Dy could be easily dissolved in Al vacancies in all three types of NiAl,which provides a new existence pattern of Dy in NiAl beyond experimental detection.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号