简介概要

Wet chemical synthesis of La9.83–xSrxSi6O26+δ(0≤x≤0.50) powders, characterization of intermediate and final products

来源期刊:JOURNAL OF RARE EARTHS2015年第3期

论文作者:Kioupis D. Argyridou M. Gaki A. Kakali G.

文章页码:320 - 326

摘    要:In this paper we reported the preparation and extensive characterization of La9.83–x Sr x Si6O26+δ(0≤x≤0.50) precursors, intermediate and final products. The sintering reactions, the phase formation, the structure as well as the powders’ morphology were studied by means of thermogravimetric analysis, X-ray diffraction(XRD), Fourier-transform infrared spectroscopy(FTIR) and scanning electron microscopy(SEM). Moreover, the effect of stoichiometry on precursor’s structure and morphology as well as on intermediate and final products was reported. As was concluded pure La9.83Si6O26+δ, La9.38Sr0.45Si6O26+δ and La9.33Sr0.50Si6O26+δ could be prepared after sintering at 1400 °C for 20 h while La9.68Sr0.15Si6O26+δ and La9.53Sr0.30Si6O26+δ compounds contained minor traces(<3.5%) of La2Si2O7 secondary phase. Concerning the synthesis, there have been no previous reports on the preparation of pure La9.83Si6O26+δ, La9.38Sr0.45Si6O26+δ and La9.33Sr0.50Si6O26+δ compounds. The final powders consisted of spherical particles and an increase of Sr content seemed to inhibit sintering phenomena. The existence of interstitial oxygen at intermediate crystallographic positions of apatite structure had great effect on Si O4 sub-structure distortion. The increase of Sr content led to a major reduction of interstitial oxygen quantity and the refutation of silicon tetrahedron distortion.

详情信息展示

Wet chemical synthesis of La9.83–xSrxSi6O26+δ(0≤x≤0.50) powders, characterization of intermediate and final products

Kioupis D.,Argyridou M.,Gaki A.,Kakali G.

National Technical University of Athens, School of Chemical Engineering, 9 Heroon Polytechniou St., Athens 15773, Greece

摘 要:In this paper we reported the preparation and extensive characterization of La9.83–x Sr x Si6O26+δ(0≤x≤0.50) precursors, intermediate and final products. The sintering reactions, the phase formation, the structure as well as the powders’ morphology were studied by means of thermogravimetric analysis, X-ray diffraction(XRD), Fourier-transform infrared spectroscopy(FTIR) and scanning electron microscopy(SEM). Moreover, the effect of stoichiometry on precursor’s structure and morphology as well as on intermediate and final products was reported. As was concluded pure La9.83Si6O26+δ, La9.38Sr0.45Si6O26+δ and La9.33Sr0.50Si6O26+δ could be prepared after sintering at 1400 °C for 20 h while La9.68Sr0.15Si6O26+δ and La9.53Sr0.30Si6O26+δ compounds contained minor traces(<3.5%) of La2Si2O7 secondary phase. Concerning the synthesis, there have been no previous reports on the preparation of pure La9.83Si6O26+δ, La9.38Sr0.45Si6O26+δ and La9.33Sr0.50Si6O26+δ compounds. The final powders consisted of spherical particles and an increase of Sr content seemed to inhibit sintering phenomena. The existence of interstitial oxygen at intermediate crystallographic positions of apatite structure had great effect on Si O4 sub-structure distortion. The increase of Sr content led to a major reduction of interstitial oxygen quantity and the refutation of silicon tetrahedron distortion.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号