简介概要

Influence of Nitrogen Flow Ratio on the Microstructure, Composition, and Mechanical Properties of DC Magnetron Sputtered Zr-B-O-N Films

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2012年第11期

论文作者:Doo-In Kim KwangHo Kim

文章页码:981 - 991

摘    要:Nanocrystalline ZrB 2 film and nanocomposite Zr-B-O-N films were prepared by non-reactive as well as reactive magnetron sputtering techniques, respectively. By means of X-ray diffraction analysis, electron probe microanalysis, X-ray photoelectron spectroscopy, and scanning electron microscopy, the influence of nitrogen flow ratio on the film microstructure and characteristics were investigated systematically, including the deposition rate, chemical compositions, phase constituents, grain size, chemical bonding, as well as cross-sectional morphologies. Meanwhile, the hardness and adhesion of above films were also evaluated by micro-indentation method and a scratch tester. With increasing the nitrogen flow ratio, the deposition rate of above films decreased approximately linearly, whereas the contents of N and O in the films increased gradually and tended to saturation. Moreover, the film microstructure was also altered gradually from a fine columnar microstructure to a featureless glass-structure. As the nitrogen flow ratio was 11.7%, the Zr-B-O-N film possessed an typical nanocomposite structure and presented good mechanical properties. During the process of reactive sputtering of metal borides, the introduction of nitrogen can show a pronounced suppression of columnar grain growth and strong nanocomposite structure forming ability.

详情信息展示

Influence of Nitrogen Flow Ratio on the Microstructure, Composition, and Mechanical Properties of DC Magnetron Sputtered Zr-B-O-N Films

Doo-In Kim,KwangHo Kim

National Core Research Center for Hybrid Materials Solution, Pusan National University

摘 要:Nanocrystalline ZrB 2 film and nanocomposite Zr-B-O-N films were prepared by non-reactive as well as reactive magnetron sputtering techniques, respectively. By means of X-ray diffraction analysis, electron probe microanalysis, X-ray photoelectron spectroscopy, and scanning electron microscopy, the influence of nitrogen flow ratio on the film microstructure and characteristics were investigated systematically, including the deposition rate, chemical compositions, phase constituents, grain size, chemical bonding, as well as cross-sectional morphologies. Meanwhile, the hardness and adhesion of above films were also evaluated by micro-indentation method and a scratch tester. With increasing the nitrogen flow ratio, the deposition rate of above films decreased approximately linearly, whereas the contents of N and O in the films increased gradually and tended to saturation. Moreover, the film microstructure was also altered gradually from a fine columnar microstructure to a featureless glass-structure. As the nitrogen flow ratio was 11.7%, the Zr-B-O-N film possessed an typical nanocomposite structure and presented good mechanical properties. During the process of reactive sputtering of metal borides, the introduction of nitrogen can show a pronounced suppression of columnar grain growth and strong nanocomposite structure forming ability.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号