简介概要

Pseudo core-shell LaCoO3@MgO perovskite oxides for high performance methane catalytic oxidation

来源期刊:JOURNAL OF RARE EARTHS2021年第1期

论文作者:Saifei Wang Jie Liu Yiyuan Zhang Peiqi Chu Haobin Liu Man Wang Erhong Duan

摘    要:Magnesia modified LaCoO3 was prepared by a facile one-step sol-gel method and used for removal of dilute methane.Compared with the conventional doping technique,the obtained LaCoO3@MgO-x exhibits pseudo core-shell structure and shows superior catalytic activity.The methane conversion exceeds90% at 532℃ on LaCoO3@MgO-0.1,while only 60% of methane is conversed using the doped perovskite LaCo0.9Mg0.1O3.The high catalytic performance of LaCoO3@MgO-0.1 is mainly attributed to the adjustment of surface acid-base properties by the MgO shell structure.According to density functional theory(DFT) calculation,the methane is more likely to be adsorbed and cracked on LaCoO3@MgO-0.1.The in situ DRIFTS shows that CH3-O-CH3 intermediate specie is formed.The pseudo core-shell structure also enhances the stability and the LaCoO3@MgO-0.1 maintains high activity after working for 100 h.The above results demonstrate that surface modification by magnesia is an effective strategy for improving LaCoO3 catalytic performance.

详情信息展示

Pseudo core-shell LaCoO3@MgO perovskite oxides for high performance methane catalytic oxidation

Saifei Wang,Jie Liu,Yiyuan Zhang,Peiqi Chu,Haobin Liu,Man Wang,Erhong Duan

School of Environmental Science and Engineering,Hebei University of Science and Technology

摘 要:Magnesia modified LaCoO3 was prepared by a facile one-step sol-gel method and used for removal of dilute methane.Compared with the conventional doping technique,the obtained LaCoO3@MgO-x exhibits pseudo core-shell structure and shows superior catalytic activity.The methane conversion exceeds90% at 532℃ on LaCoO3@MgO-0.1,while only 60% of methane is conversed using the doped perovskite LaCo0.9Mg0.1O3.The high catalytic performance of LaCoO3@MgO-0.1 is mainly attributed to the adjustment of surface acid-base properties by the MgO shell structure.According to density functional theory(DFT) calculation,the methane is more likely to be adsorbed and cracked on LaCoO3@MgO-0.1.The in situ DRIFTS shows that CH3-O-CH3 intermediate specie is formed.The pseudo core-shell structure also enhances the stability and the LaCoO3@MgO-0.1 maintains high activity after working for 100 h.The above results demonstrate that surface modification by magnesia is an effective strategy for improving LaCoO3 catalytic performance.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号