简介概要

Facile synthesis and superior photocatalytic and electrocatalytic performances of porous B-doped g-C3N4 nanosheets

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2018年第12期

论文作者:Qian Yan Gui-Fang Huang Dong-Feng Li Ming Zhang An-Lian Pan Wei-Qing Huang

文章页码:2515 - 2520

摘    要:As a low-cost visible-light-driven metal-free catalyst, graphitic carbon nitride(g-C3N4) has attracted increasing attention due to its wide applications for solar energy conversion, environmental purification,and organic photosynthesis. In particular, the catalytic performance of g-C3N4 can be easily modulated by modifying morphology, doping, and copolymerization. Simultaneous optimization, however, has little been achieved. Herein, a facile one-pot strategy is developed to synthesize porous B-doped g-C3N4 nanosheets by using H3BO3 and urea as the precursor during thermal polymerization. The resultant B-doped g-C3N4 nanosheets retain the original framework of bulk g-C3N4, while induce prominently enhanced visible light harvesting and narrowing band gap by 0.32 eV compared to pure g-C3N4. Moreover, the adsorption capacity and photodegradation kinetics of methylene blue(MB) under visible light irradiation over B-doped g-C3N4 nanosheets can be improved by 20.5 and 17 times, respectively. The synthesized porous B-doped g-C3N4 nanosheets also exhibit higher activities than pure g-C3N4 as bifunctional electrocatalyst for both oxygen evolution reaction(OER) and oxygen reduction reaction(ORR). The enhanced catalyst performance of porous B-doped g-C3N4 nanosheets stems from the strong synergistic effect originating from the larger exposed active sites generated by the exfoliation of g-C3N4 into nanosheets and the porous structure, as well as the better conductivity owing to B-doping. This work provides a simple, effective, and robust method for the synthesis of g-C3N4-based nanomaterial with superior properties to meet the needs of various applications.

详情信息展示

Facile synthesis and superior photocatalytic and electrocatalytic performances of porous B-doped g-C3N4 nanosheets

Qian Yan,Gui-Fang Huang,Dong-Feng Li,Ming Zhang,An-Lian Pan,Wei-Qing Huang

Department of Applied Physics,School of Physics and Electronics,Hunan University

摘 要:As a low-cost visible-light-driven metal-free catalyst, graphitic carbon nitride(g-C3N4) has attracted increasing attention due to its wide applications for solar energy conversion, environmental purification,and organic photosynthesis. In particular, the catalytic performance of g-C3N4 can be easily modulated by modifying morphology, doping, and copolymerization. Simultaneous optimization, however, has little been achieved. Herein, a facile one-pot strategy is developed to synthesize porous B-doped g-C3N4 nanosheets by using H3BO3 and urea as the precursor during thermal polymerization. The resultant B-doped g-C3N4 nanosheets retain the original framework of bulk g-C3N4, while induce prominently enhanced visible light harvesting and narrowing band gap by 0.32 eV compared to pure g-C3N4. Moreover, the adsorption capacity and photodegradation kinetics of methylene blue(MB) under visible light irradiation over B-doped g-C3N4 nanosheets can be improved by 20.5 and 17 times, respectively. The synthesized porous B-doped g-C3N4 nanosheets also exhibit higher activities than pure g-C3N4 as bifunctional electrocatalyst for both oxygen evolution reaction(OER) and oxygen reduction reaction(ORR). The enhanced catalyst performance of porous B-doped g-C3N4 nanosheets stems from the strong synergistic effect originating from the larger exposed active sites generated by the exfoliation of g-C3N4 into nanosheets and the porous structure, as well as the better conductivity owing to B-doping. This work provides a simple, effective, and robust method for the synthesis of g-C3N4-based nanomaterial with superior properties to meet the needs of various applications.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号