改进的遗传算法在优化设计中的应用
来源期刊:东北大学学报(自然科学版)2005年第12期
论文作者:何大阔 王福利 贾明兴
文章页码:1123 - 1126
关键词:遗传算法;非线性规划;单纯形搜索;交叉算子;惩罚策略;修复算子;
摘 要:针对实际机械优化设计中大量的非线性规划问题,提出一种改进的遗传算法.在对单纯形搜索与算术交叉思想进行分析的基础上,将二者相结合,提出了改进的交叉算子以提高遗传算法的局部寻优能力,将种群逐步向极值点引导,实现算法的快速寻优.同时,为了更好地引导非可行个体趋近可行域,改善解的可行性,将惩罚策略与修复策略相结合提出修复算子,对不可行解进行修复操作,加快个体趋近可行域的速度,提高算法搜索效率以及对非线性约束的处理能力,从而达到改善算法整体性能的目的.实际机械工程优化设计问题的应用研究验证了这种方法的有效性.
何大阔,王福利,贾明兴
摘 要:针对实际机械优化设计中大量的非线性规划问题,提出一种改进的遗传算法.在对单纯形搜索与算术交叉思想进行分析的基础上,将二者相结合,提出了改进的交叉算子以提高遗传算法的局部寻优能力,将种群逐步向极值点引导,实现算法的快速寻优.同时,为了更好地引导非可行个体趋近可行域,改善解的可行性,将惩罚策略与修复策略相结合提出修复算子,对不可行解进行修复操作,加快个体趋近可行域的速度,提高算法搜索效率以及对非线性约束的处理能力,从而达到改善算法整体性能的目的.实际机械工程优化设计问题的应用研究验证了这种方法的有效性.
关键词:遗传算法;非线性规划;单纯形搜索;交叉算子;惩罚策略;修复算子;