简介概要

Surfactant-decorated graphite nanoplatelets(GNPs) reinforced aluminum nanocomposites: sintering effects on hardness and wear

来源期刊:International Journal of Minerals Metallurgy and Materials2018年第6期

论文作者:Zeeshan Baig Othman Mamat Mazli Mustapha Asad Mumtaz Sadaqat Ali Mansoor Sarfraz

文章页码:704 - 715

摘    要:The exceptional properties of graphene make it ideal as a reinforcement to enhance the properties of aluminum matrices and this critically depends on uniform dispersion. In this study, the dispersion issue was addressed by sonication and non-covalent surface functionalization of graphite nanoplatelets(GNPs) using two types of surfactant: anionic(sodium dodecyl benzene sulfate(SDBS)) and non-ionic polymeric(ethyl cellulose(EC)). After colloidal mixing with Al powder, consolidation was performed at two sintering temperatures(550 and 620°C). The structure, density, mechanical and wear properties of the nanocomposite samples were investigated and compared with a pure Al and a pure GNPs/Al nanocomposite sample. Noticeably, EC-based 0.5 wt% GNPs/Al samples showed the highest increment of 31% increase in hardness with reduced wear rate of 98.25% at 620°C, while a 22% increase in hardness with reduced wear rate of 96.98% at 550°C was observed, as compared to pure Al. Microstructural analysis and the overall results validate the use of EC-based GNPs/Al nanocomposites as they performed better than pure Al and pure GNPs/Al nanocomposite at both sintering temperatures.

详情信息展示

Surfactant-decorated graphite nanoplatelets(GNPs) reinforced aluminum nanocomposites: sintering effects on hardness and wear

Zeeshan Baig1,Othman Mamat1,Mazli Mustapha1,Asad Mumtaz2,Sadaqat Ali1,Mansoor Sarfraz3

1. Department of Mechanical Engineering, Universiti Teknologi PETRONAS2. Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS3. Sustainable Energy Technologies Center, College of Engineering, King Saud University

摘 要:The exceptional properties of graphene make it ideal as a reinforcement to enhance the properties of aluminum matrices and this critically depends on uniform dispersion. In this study, the dispersion issue was addressed by sonication and non-covalent surface functionalization of graphite nanoplatelets(GNPs) using two types of surfactant: anionic(sodium dodecyl benzene sulfate(SDBS)) and non-ionic polymeric(ethyl cellulose(EC)). After colloidal mixing with Al powder, consolidation was performed at two sintering temperatures(550 and 620°C). The structure, density, mechanical and wear properties of the nanocomposite samples were investigated and compared with a pure Al and a pure GNPs/Al nanocomposite sample. Noticeably, EC-based 0.5 wt% GNPs/Al samples showed the highest increment of 31% increase in hardness with reduced wear rate of 98.25% at 620°C, while a 22% increase in hardness with reduced wear rate of 96.98% at 550°C was observed, as compared to pure Al. Microstructural analysis and the overall results validate the use of EC-based GNPs/Al nanocomposites as they performed better than pure Al and pure GNPs/Al nanocomposite at both sintering temperatures.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号