Preparation of composite electroheat carbon film

来源期刊:中国有色金属学报(英文版)2005年第5期

论文作者:夏金童 涂川俊 李焰 胡利明 邓久华

文章页码:1014 - 1020

Key words:electroheat carbon film; electroheat property; modified resin; preparation process

Abstract: A kind of conductive and heating unit, which can reach a high surface electroheat temperature at a low voltage, was developed in view of the traditional electroheat coating which has a low surface electroheat temperature and an insufficient heat resistance of its binder. The coating molded electroheat carbon film(CMECF) was prepared by carbonizing the coating which was prepared by adding modified resin into flake graphite and carbon fiber, coating molded onto the surface of the heat resisting matrix after dried, while the hot pressing molded electroheat thick carbon film(HPMETCF) was prepared by carbonizing the bodies whose powders were hot pressing molded directly. The surface and inner microstructure of the carbon film was characterized and analyzed by SEM and DSC/TG, while electroheat property was tested by voltage-current volume resistivity tester and electrical parameter tester. The results show that, close-packed carbon network configuration is formed within the composite electroheat carbon film which yields a volume resistivity of 0.5×10-2-10.0×10-2Ωcm at room temperature. The electroheat carbon film after anti-oxidizable treatment reaches a higher surface electroheat temperature than that of the existing electroheat coatings at a low voltage, and has excellent electroheat property, high thermal efficiency as well as stable physicochemical property. It is found that, at room temperature(19±2℃) and 22V for 5min, the surface electroheat temperature of the self-produced CMECF (mfiller/mresin=1.8/1) reaches 112℃ while HPMETCF (mfiller/mresin=3.6/1) reaches 265℃.

基金信息:the National Natural Science Foundation of China

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号