基于贝叶斯回归的多核回声状态网络研究
来源期刊:控制与决策2010年第4期
论文作者:韩敏 穆大芸
文章页码:531 - 1075
关键词:贝叶斯回归;多储备池;回声状态网络;多变量;
摘 要:在利用单储备池模型对多变量预测研究时,多个变量只能通过单个储备池进行特征映射,无法分别刻画各个变量的动力学特性.针对以上问题,提出一种多储备池回声状态网络.混沌系统中各个变量分别通过各个储备池扩展成高维的特征向量,采用Bayesian线性回归的方法,对多核回声状态网络输出权值进行训练,形成一种新的预报器,即多核贝叶斯状态回声机(MrBESN).实际数据的仿真结果验证了所提方法的有效性.
韩敏,穆大芸
大连理工大学电子与信息工程学院
摘 要:在利用单储备池模型对多变量预测研究时,多个变量只能通过单个储备池进行特征映射,无法分别刻画各个变量的动力学特性.针对以上问题,提出一种多储备池回声状态网络.混沌系统中各个变量分别通过各个储备池扩展成高维的特征向量,采用Bayesian线性回归的方法,对多核回声状态网络输出权值进行训练,形成一种新的预报器,即多核贝叶斯状态回声机(MrBESN).实际数据的仿真结果验证了所提方法的有效性.
关键词:贝叶斯回归;多储备池;回声状态网络;多变量;