基于混合PSO优化的LSSVM锅炉烟气含氧量预测控制

来源期刊:中南大学学报(自然科学版)2012年第3期

论文作者:龙文 梁昔明 龙祖强

文章页码:980 - 985

关键词:最小二乘支持向量机;粒子群算法;烟气含氧量;预测控制

Key words:least square support vector machine (LSSVM); particle swarm optimization (PSO); O2 content in flue gas; predictive control

摘    要:

烟气含氧量是影响火电厂锅炉运行安全性和经济性的一个重要因素,影响锅炉烟气含氧量的因素多而复杂,对烟气含氧量特性进行建模与控制是实现锅炉正常运行的基础。借助现场运行数据,根据锅炉烟气含氧量的特性,建立基于最小二乘支持向量机(LSSVM)的锅炉烟气含氧量预测模型。在此基础上结合全局寻优的混合粒子群算法(PSO),对锅炉烟气含氧量进行控制。仿真结果表明:该方法能够比较准确地对火电厂锅炉烟气含氧量进行测量和控制,为锅炉燃烧系统的闭环控制与优化运行提供了新的手段。

Abstract:

O2 content in flue gas is a main factor that has great impacts on the safety and economical efficiency of boiler operation. Together with many other complicated factors. Building a model to predict O2 content in flue gas is a good way to realize the normal operation of boiler. Using the data of boiler operation, a least square support vector machine (LSSVM) model of the boiler oxygen content property was developed based on gas oxygen characteristic. After that, combined with the particle swarm optimization algorithm (PSO), the O2 content in flue gas of boiler was controlled. Simulation results show that the proposed method can more accurately measure and control the O2 content in flue gas of boiler, and provide a new way to optimize and control process of boiler combustion in close-loop.

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号