融合稀疏编码与深度学习的草图特征表示
来源期刊:控制与决策2021年第3期
论文作者:赵鹏 高杰超 冯晨成 韩莉
文章页码:699 - 704
关键词:草图特征表示;稀疏编码;深度学习;特征提取;字典学习;部件分割;
摘 要:针对小数据集下单纯使用深度学习方法的草图特征提取可分辨性低下的问题,提出一种融合稀疏编码和深度学习的草图特征表示方法.该算法首先对草图进行语义分割;然后迁移深度学习方法,分别提取草图特征和草图部件特征,之后将部件特征降维聚类,获取聚类中心;最后利用部件聚类中心向量初始化稀疏编码中的字典,交替迭代求取获得最终的草图特征.不同于以往的草图特征表示方法,将迁移深度学习获得的草图部件特征引入到稀疏编码中,作为字典的初始基向量,将语义信息融入到稀疏编码,在提升草图特征表示性能的同时,使得稀疏表示具有更好的可解释性.实验结果显示,所提方法下的草图识别率高于采用传统非深度学习和深度学习方法提取的草图特征的草图识别率.
赵鹏,高杰超,冯晨成,韩莉
安徽大学计算机科学与技术学院
摘 要:针对小数据集下单纯使用深度学习方法的草图特征提取可分辨性低下的问题,提出一种融合稀疏编码和深度学习的草图特征表示方法.该算法首先对草图进行语义分割;然后迁移深度学习方法,分别提取草图特征和草图部件特征,之后将部件特征降维聚类,获取聚类中心;最后利用部件聚类中心向量初始化稀疏编码中的字典,交替迭代求取获得最终的草图特征.不同于以往的草图特征表示方法,将迁移深度学习获得的草图部件特征引入到稀疏编码中,作为字典的初始基向量,将语义信息融入到稀疏编码,在提升草图特征表示性能的同时,使得稀疏表示具有更好的可解释性.实验结果显示,所提方法下的草图识别率高于采用传统非深度学习和深度学习方法提取的草图特征的草图识别率.
关键词:草图特征表示;稀疏编码;深度学习;特征提取;字典学习;部件分割;